223 resultados para Homography constraint
Resumo:
We show how, for large classes of systems with purely second-class constraints, further information can be obtained about the constraint algebra. In particular, a subset consisting of half the full set of constraints is shown to have vanishing mutual brackets. Some other constraint brackets are also shown to be zero. The class of systems for which our results hold includes examples from non-relativistic particle mechanics as well as relativistic field theory. The results are derived at the classical level for Poisson brackets, but in the absence of commutator anomalies the same results will hold for the commutators of the constraint operators in the corresponding quantised theories.
Resumo:
The effect of turbulence on the nonaxisymmetric flux rings of equipartition field strength in bipolar magnetic regions is studied on the basis of the small-scale momentum exchange mechanism and the giant cell drag combined with the Kelvin-Helmholtz drag mechanism. It is shown that the giant cell drag and small-scale momentum exchange mechanism can make equipartition flux loops emerge at low latitudes, in addition to making them exhibit the observed tilts. However, the sizes of the flux tubes have to be restricted to a couple of hundred kilometers. An ad hoc constraint on the footpoints of the flux loops is introduced by not letting them move in the phi direction, and it is found that equipartition fields of any size can be made to emerge at sunspot latitudes with the observed tilts by suitably adjusting the footpoint separations.
Resumo:
Differences in flower success patterns in two habitat types that differed drastically with respect to rainfall, tree density and species composition were studied at Mudumalai wildlife sanctuary, India. Observations on phenological patterns of two species, Cassia fistula and Gmelina arborea, were made from April 1988 through June 1990. Quantitative data on flower-fruit ratio, insect visitation rates, pollen grain per stigma and the number of fruits per tree were recorded. Data were also collected on the number of pollen deposited on the stigma after different types of bees visited the flower. The data suggested that only carpenter bees (Xylocopa spp) effect pollination in C. fistula. The differences in fruit-flower ratios were attributed to the differences in insect visitation rates to inflorescences between sites. The low pollen number per stigma and the resultant reduction in reproductive success in C. fistula are attributed to the competing species G. arborea receiving more visitations from pollinators in the wetter site. These results suggest that pollinator limitation is another constraint in reproductive success of plants.
Resumo:
Proline plays an important role in the secondary structure of proteins. In the pursuit of understanding its structural role, Proline containing helices with constraints have been studied by employing molecular dynamics (MD) technique. In the present study, the constraint introduced is a threonine residue, whose sidechain has intramolecular hydrogen bond interaction with the backbone oxygen atom. The three systems that have been chosen for characterization are: (1) Ace-(Ala)12−Thr-Pro-(Ala)10−NHMe, (2) Ace-(Ala)13-Pro-Ala-Thr- (Ala)8-NHMe and (3) Ace-(Ala)13-Pro-(Ala)3-Thr-(Ala)6-NHMe. The equilibrium structures and structural transitions have been identified by monitoring the backbone dihedral angles, bend related parameters and the hydrogen bond interactions. The MD averages and root mean square (r.m.s.) fluctuations are compared and discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We analyze here the occurrence of antiferromagnetic (AFM) correlations in the half-filled Hubbard model in one and two space dimensions using a natural fermionic representation of the model and a newly proposed way of implementing the half-filling constraint. We find that our way of implementing the constraint is capable of enforcing it exactly already at the lowest levels of approximation. We discuss how to develop a systematic adiabatic expansion for the model and how Berry's phase contributions arise quite naturally from the adiabatic expansion. At low temperatures and in the continuum limit the model gets mapped onto an O(3) nonlinear sigma model (NLsigma). A topological, Wess-Zumino term is present in the effective action of the ID NLsigma as expected, while no topological terms are present in 2D. Some specific difficulties that arise in connection with the implementation of an adiabatic expansion scheme within a thermodynamic context are also discussed, and we hint at possible solutions.
Resumo:
Gauss and Fourier have together provided us with the essential techniques for symbolic computation with linear arithmetic constraints over the reals and the rationals. These variable elimination techniques for linear constraints have particular significance in the context of constraint logic programming languages that have been developed in recent years. Variable elimination in linear equations (Guassian Elimination) is a fundamental technique in computational linear algebra and is therefore quite familiar to most of us. Elimination in linear inequalities (Fourier Elimination), on the other hand, is intimately related to polyhedral theory and aspects of linear programming that are not quite as familiar. In addition, the high complexity of elimination in inequalities has forces the consideration of intricate specializations of Fourier's original method. The intent of this survey article is to acquaint the reader with these connections and developments. The latter part of the article dwells on the thesis that variable elimination in linear constraints over the reals extends quite naturally to constraints in certain discrete domains.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. Solution of the matrix equation, involving unknown controller gams, open-loop system matrices, and desired eigenvalues and eigenvectors, results hi the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether.
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.
Resumo:
This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein bounding schemes to relax the CCP as a convex second order cone program whose solution is guaranteed to satisfy the probabilistic constraint. Prior to this work, only the Chebyshev based relaxations were exploited in learning algorithms. Bernstein bounds employ richer partial information and hence can be far less conservative than Chebyshev bounds. Due to this efficient modeling of uncertainty, the resulting classifiers achieve higher classification margins and hence better generalization. Methodologies for classifying uncertain test data points and error measures for evaluating classifiers robust to uncertain data are discussed. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle data uncertainty and outperform state-of-the-art in many cases.
Resumo:
In this paper, we consider robust joint linear precoder/receive filter design for multiuser multi-input multi-output (MIMO) downlink that minimizes the sum mean square error (SMSE) in the presence of imperfect channel state information (CSI). The base station is equipped with multiple transmit antennas, and each user terminal is equipped with multiple receive antennas. The CSI is assumed to be perturbed by estimation error. The proposed transceiver design is based on jointly minimizing a modified function of the MSE, taking into account the statistics of the estimation error under a total transmit power constraint. An alternating optimization algorithm, wherein the optimization is performed with respect to the transmit precoder and the receive filter in an alternating fashion, is proposed. The robustness of the proposed algorithm to imperfections in CSI is illustrated through simulations.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
The eigenvalue and eigenstructure assignment procedure has found application in a wide variety of control problems. In this paper a method for assigning eigenstructure to a Linear time invariant multi-input system is proposed. The algorithm determines a matrix that has eigenvalues and eigenvectors at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenstructure. solution of the matrix equation, involving unknown controller gains, open-loop system matrices, and desired eigenvalues and eigenvectors, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint can easily be overcome by a negligible shift in the values. Application of the procedure is illustrated through the offset control of a satellite supported, from an orbiting platform, by a flexible tether,
Resumo:
The eigenvalue assignment/pole placement procedure has found application in a wide variety of control problems. The associated literature is rather extensive with a number of techniques discussed to that end. In this paper a method for assigning eigenvalues to a Linear Time Invariant (LTI) single input system is proposed. The algorithm determines a matrix, which has eigenvalues at the desired locations. It is obtained from the knowledge of the open-loop system and the desired eigenvalues. Solution of the matrix equation, involving unknown controller gains, open-loop system matrices and desired eigenvalues, results in the state feedback controller. The proposed algorithm requires the closed-loop eigenvalues to be different from those of the open-loop case. This apparent constraint is easily overcome by a negligible shift in the values. Two examples are considered to verify the proposed algorithm. The first one pertains to the in-plane libration of a Tethered Satellite System (TSS) while the second is concerned with control of the short period dynamics of a flexible airplane. Finally, the method is extended to determine the Controllability Grammian, corresponding to the specified closed-loop eigenvalues, without computing the controller gains.