98 resultados para Groundwater Hydrology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of pit-toilets has severely contaminated the groundwater with nitrate ions in Mulbagal town, Karnataka, India. This paper examines the potential of nitrate ions in the pit-toilet effluents to transform to N2O and to escape to atmosphere from 16 wards of Mulbagal town. Anaerobic conditions prevailing in the pit-toilet convert 25 % of the available N to ammonium ions. Only 3-33 % of ammonium ions transform to nitrate ions in the pit-toilet and escape with the effluent. During migration to aquifer, only 4.5 % of available nitrate concentration in the effluent transforms to N-2 and N2O gases in the 1.5-m-thick saturated zone underlying the pit-toilet; 36-55 % of the gases comprise N2O and the remainder of N-2. Further only 18 % of N2O formed escapes to atmosphere, while the remainder is retained in soil solution. Calculations show that 9.88 x 10(13) molecules of N2O/cm(2) would be cumulatively released from 16 wards of Mulbagal town, over an area of 4.9 km(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study concerns the relationship between the power law recession coefficient k (in - dQ/dt = kQ(alpha), Q being discharge at the basin outlet) and past average discharge Q(N) (where N is the temporal distance from the center of the selected time span in the past to the recession peak), which serves as a proxy for past storage state of the basin. The strength of the k-Q(N) relationship is characterized by the coefficient of determination R-N(2), which is expected to indicate the basin's ability to hold water for N days. The main objective of this study is to examine how R-N(2) value of a basin is related with its physical characteristics. For this purpose, we use streamflow data from 358 basins in the United States and selected 18 physical parameters for each basin. First, we transform the physical parameters into mutually independent principal components. Then we employ multiple linear regression method to construct a model of R-N(2) in terms of the principal components. Furthermore, we employ step-wise multiple linear regression method to identify the dominant catchment characteristics that influence R-N(2) and their directions of influence. Our results indicate that R-N(2) is appreciably related to catchment characteristics. Particularly, it is noteworthy that the coefficient of determination of the relationship between R-N(2) and the catchment characteristics is 0.643 for N = 45. We found that topographical characteristics of a basin are the most dominant factors in controlling the value of R-N(2). Our results may be suggesting that it is possible to tell about the water holding capacity of a basin by just knowing about a few of its physical characteristics. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations,are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Cluysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWL A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AIM, virus interaction with mobile and immobile colloids, virus attachment to solid-water interface (SWI), and colloid interaction with SWI and AWL The virus BTC is relatively insensitive to parameters describing the maximum adsorption capacity of the AWI for colloids, inlet colloid concentration, virus detachment rate coefficient from the SW!, maximum adsorption capacity of the AWI for viruses and inlet virus concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaling approaches are widely used by hydrologists for Regional Frequency Analysis (RFA) of floods at ungauged/sparsely gauged site(s) in river basins. This paper proposes a Recursive Multi-scaling (RMS) approach to RFA that overcomes limitations of conventional simple- and multi-scaling approaches. The approach involves identification of a separate set of attributes corresponding to each of the sites (being considered in the study area/region) in a recursive manner according to their importance, and utilizing those attributes to construct effective regional regression relationships to estimate statistical raw moments (SMs) of peak flows. The SMs are then utilized to arrive at parameters of flood frequency distribution and quantile estimate(s) corresponding to target return period(s). Effectiveness of the RMS approach in arriving at flood quantile estimates for ungauged sites is demonstrated through leave-one-out cross-validation experiment on watersheds in Indiana State, USA. Results indicate that the approach outperforms index-flood based Region-of-Influence approach, simple- and multi-scaling approaches and a multiple linear regression method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is expected to influence extreme precipitation which in turn might affect risks of pluvial flooding. Recent studies on extreme rainfall over India vary in their definition of extremes, scales of analyses and conclusions about nature of changes in such extremes. Fingerprint-based detection and attribution (D&A) offer a formal way of investigating the presence of anthropogenic signals in hydroclimatic observations. There have been recent efforts to quantify human effects in the components of the hydrologic cycle at large scales, including precipitation extremes. This study conducts a D&A analysis on precipitation extremes over India, considering both univariate and multivariate fingerprints, using a standardized probability-based index (SPI) from annual maximum one-day (RX1D) and five-day accumulated (RX5D) rainfall. The pattern-correlation based fingerprint method is used for the D&A analysis. Transformation of annual extreme values to SPI and subsequent interpolation to coarser grids are carried out to facilitate comparison between observations and model simulations. Our results show that in spite of employing these methods to address scale and physical processes mismatch between observed and model simulated extremes, attributing changes in regional extreme precipitation to anthropogenic climate change is difficult. At very high (95%) confidence, no signals are detected for RX1D, while for the RX5D and multivariate cases only the anthropogenic (ANT) signal is detected, though the fingerprints are in general found to be noisy. The findings indicate that model simulations may underestimate regional climate system responses to increasing human forcings for extremes, and though anthropogenic factors may have a role to play in causing changes in extreme precipitation, their detection is difficult at regional scales and not statistically significant. (C) 2015 Elsevier B.V. All rights reserved.