170 resultados para Glass polishing
Resumo:
Fragility is viewed as a measure of the loss of rigidity of a glass structure above its glass transition temperature. It is attributed to the weakness of directional bonding and to the presence of a high density of low-energy configurational states. An a priori fragility function of electronegativities and bond distances is proposed which quite remarkably reproduces the entire range of reported fragilities and demonstrates that the fragility of a melt is indeed encrypted in the chemistry of the parent material. It has also been shown that the use of fragility-modified activation barriers in the Arrhenius function account for the whole gamut of viscosity behavior of liquids. It is shown that fragility can be a universal scaling parameter to collapse all viscosity curves on to a master plot.
Resumo:
Glass nanocomposites in the system (1-x)Li2B4O7-xBi(2)WO(6) (0 less than or equal to x less than or equal to 0.35, in molar ratio) were fabricated by splat quenching technique. The as-quenched samples were X-ray amorphous. Differential Thermal Analyses (DTA) confirmed their glassy nature. The composites on heat-treatment at 720 K yielded monophasic crystalline bismuth tungstate in lithium borate glass matrix. The average size and the spherical nature of the dispersed crystallites were assessed via High Resolution Transmission Electron Microscopy (HRTEM). The dielectric constants (epsilon(r)) of both the as-quenched and post heat-treated composites were found to increase with increase in x (bismuth tungstate content) at all the frequencies (100 Hz-40 MHz) in the temperature range 300 K-870 K. While the dielectric loss (D) decreased with increasing x. The pyroelectric coefficients of the as-quenched (consisting 20 nm sized crystallites) and 720 K heat-treated sample (x = 0.3) were determined as a function of temperature (300 K-873 K) and the values obtained at room temperature were 20 and 60 muC/m(2) K respectively. The as-quenched and heat-treated (720 K) glass nanocomposites exhibited ferroelectric (P Vs E) hysteresis loops. The remnant polarization and coercive field of the heat-treated glass nanocomposite at 300 K were respectively 2.597 muC/cm(2) and 543 V/cm. These glass nanocomposites were birefringent in the 300-873 K temperature range.
Resumo:
Exfoliated graphite (EG) was modified by covalently attaching dopamine (DA) (3,4-dihydroxyphenethylamine) through amide linkages, using -COOH groups introduced on the EG surface. The modified material was characterized by FT-IR spectroscopy, Xray photoelectron spectroscopy and electrochemical techniques. Composites of DA modified EG dispersed in organically modified silicates were prepared by a sol-get process. Electrodes were fabricated by casting the composites in glass tubes. The sol-gel based electrodes were found to be active for the electrocatalytic oxidation of NADH and biosensing of ethanol in presence of NAD(+) and alcohol dehydrogenase enzyme. The modified composite electrodes were found to be stable for several months. The surface of the electrode could be renewed just by mechanically polishing the electrode using emery sheets. The modified EG was also pressed and restacked in the form of a pellet and the use of this material as a binderless bulk-modified electrode was also demonstrated. The performance of sol-gel derived composite EG electrodes with binderless bulk-modified EG electrodes was compared. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Transparent glasses in the system (1−x)Li2B4O7–xBi2WO6 (0≤x≤0.35) were prepared via melt quenching technique. Differential thermal analysis was employed to characterize the as-quenched glasses. Glass-ceramics with high optical transparency were obtained by controlled heat-treatment of the glasses at 720 K for 6 h. The amorphous nature of the as-quenched glass and crystallinity of glass-ceramics were confirmed by X-ray powder diffraction studies. High resolution transmission electron microscopy (HRTEM) shows the presence of nearly spherical nanocrystallites of Bi2WO6 in Li2B4O7 glass matrix. Capacitance and dielectric loss measurements were carried out as a function of temperature (300–870 K) in the frequency range 100 Hz–40 MHz. Impedance spectroscopy employed to rationalize the electrical behavior of glasses and glass-ceramics suggest the coexistence of electronic and ionic conduction in these materials. The thermal activation energies for the electronic conduction and ionic conduction were also estimated based on the Arrhenius plots.
Resumo:
Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.
Resumo:
Transparent glass nanocomposites in the pseudo binary system (100 - x) SrB4O7 (SBO)-x Bi2VO5.5 (BiV) (0 less than or equal to n less than or equal to 70) were prepared by the splat quenching technique. The nano-crystallization of bismuth vanadate (BiV) in 50 SBO-50 BiV (in mol%) glass composite has been demonstrated. These were characterized for their structural, thermal and dielectric properties. As-quenched composites under study have been confirmed to be amorphous by X-ray powder diffraction (XRD) studies. The glass transition temperature (T-g) and crystallization temperatures (T-er) were determined using differential thermal analyses (DTA), High resolution transmission electron microscopic (HRTEM) studies carried out on heat-treated samples reveal the presence of spherical nanosize crystallites of Bi2VO5.5 (BiV) dispersed in the glassy matrix of SrB4O7 (SSO). The dielectric constant (epsilon (r)) and the dielectric loss (D) measurements were carried out on the as-quenched and heat-treated glass nanocomposite samples in the frequency range 100 Hz-10 MHz. The as-quenched and the heat-treated at two different temperatures (720 and 820 K) samples exhibited broad dielectric anomalies in the vicinity of the ferroelectric-to-paraelectric transition temperature of the parent BiV ceramics. The Curie-Weiss law was found to be valid at a temperature above the transition temperature, establishing the diffused nature of the transition. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Absorption due to immersion in aqueous media consisting of either saline or seawater or due to exposure to water vapor conditions and the attendant effect on the compressive properties of syntactic foam reinforced with E-glass fibers in the form of chopped strands were studied. Whereas the compressive strength decreased in samples exposed to water vapor, the saline or seawater immersed samples showed increase when compared to the dry sample. The decrease in strength in the vapor-exposed case is ascribed to higher absorption of water and to debonding and damaged features for interfaces. The enhancement of strength values for the samples immersed in saltish media is traced to the larger size of the chloride ion and resultant changes in the stress state around the fiber-bearing regions. Recourse to an analysis of scanning electron microscopic pictures of the compression-failed samples is taken to explain the observed trends.
Resumo:
Thin films of VO2(B), a metastable polymorph of vanadium dioxide, have been grown on glass by low-pressure metalorganic chemical vapor deposition (MOCVD). The films grown for 90 minutes have atypical microstructure, comprising micrometer-sized, island-like entities made up of numerous small, single-crystalline platelets (≅1 μm) emerging orthogonally from larger ones at the center. Microstructure evolution as a function of deposition time has been examined by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The metastable VO2(B) transforms to the stable rutile (R) phase at 550°C in inert ambient, which on cooling convert reversibly to M phase. Electron microscopy shows that annealing leads to the disintegration of the VO2(B) platelets into small crystallites of the rutile phase VO2(R), although the platelet morphology is retained. The magnitude of the jump in resistance at the semiconductor-to-metal, VO2(M)→VO2(R) phase transition depends on the arrangement of polycrystalline platelets in the films.
Resumo:
The stability of a Pd40Cu30Ni10P20 bulk metallic glass (BMG) against structural relaxation is investigated by isothermal and isochronal annealing heat treatments below and above its glass transition temperature, Tg, for varying periods. Differential scanning calorimetry (DSC) of the annealed samples shows an excess endotherm at Tg, irrespective of the annealing temperature. This recovery peak evolves exponentially with annealing time and is due to the destruction of anneal-induced compositional short range ordering. The alloy exhibits a high resistance to crystallization on annealing below Tg and complex Pd- and Ni-phosphides evolve on annealing above Tg.
Resumo:
The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.
Resumo:
The effect of host glass composition on the optical absorption and fluorescence spectra of Nd3+ has been studied in mixed alkali borate glasses of the type xNa(2)O-(30-x)K2O-69.5B(2)O(3)-0.5Nd(2)O(3) (X = 5,10,15,20 and 25). Various spectroscopic parameters such as Racah (E-1, E-2 and E-3), spin-orbit (xi(4f)) and configuration interaction (alpha, beta) parameters have been calculated. The Judd-Ofelt intensity parameters (Omega(lambda)) have been calculated and the radiative transition probabilities (A(rad)), radiative lifetimes (tau(r)), branching ratios (beta) and integrated absorption cross sections (Sigma) have been obtained for certain excited states of the Nd3+, ion and are discussed with respect to x. From the fluorescence spectra, the effective fluorescence line widths (Deltalambda(eff)) and stimulated emission cross sections (sigma(p)) have been obtained for the three transitions F-4(3/2) --> I-4(9/2), F-4(3/2) --> I-4(11/2) and F-4(3/2) --> I-4(13/2) of Nd3+. The stimulated emission cross section (sigma(p)) values are found to be in the range (2.0-4.8) x 10(-2)0 cm(2) and they are large enough to indicate that the mixed alkali borate glasses could be potential laser host materials.
Resumo:
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T(g). In these thin films we find a significant dependence of T(g) on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.