112 resultados para Geometric pattern
Resumo:
We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.
Resumo:
In this paper, we approach the classical problem of clustering using solution concepts from cooperative game theory such as Nucleolus and Shapley value. We formulate the problem of clustering as a characteristic form game and develop a novel algorithm DRAC (Density-Restricted Agglomerative Clustering) for clustering. With extensive experimentation on standard data sets, we compare the performance of DRAC with that of well known algorithms. We show an interesting result that four prominent solution concepts, Nucleolus, Shapley value, Gately point and \tau-value coincide for the defined characteristic form game. This vindicates the choice of the characteristic function of the clustering game and also provides strong intuitive foundation for our approach.
Resumo:
Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.
Resumo:
This paper extends some geometric properties of a one-parameter family of relative entropies. These arise as redundancies when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the Kullback-Leibler divergence. They satisfy the Pythagorean property and behave like squared distances. This property, which was known for finite alphabet spaces, is now extended for general measure spaces. Existence of projections onto convex and certain closed sets is also established. Our results may have applications in the Rényi entropy maximization rule of statistical physics.
Resumo:
Background: A better understanding of the quality of cellular immune responses directed against molecularly defined targets will guide the development of TB diagnostics and identification of molecularly defined, clinically relevant M.tb vaccine candidates. Methods: Recombinant proteins (n = 8) and peptide pools (n = 14) from M. tuberculosis (M.tb) targets were used to compare cellular immune responses defined by IFN-gamma and IL-17 production using a Whole Blood Assay (WBA) in a cohort of 148 individuals, i.e. patients with TB + (n = 38), TB- individuals with other pulmonary diseases (n = 81) and individuals exposed to TB without evidence of clinical TB (health care workers, n = 29). Results: M.tb antigens Rv2958c (glycosyltransferase), Rv2962c (mycolyltransferase), Rv1886c (Ag85B), Rv3804c (Ag85A), and the PPE family member Rv3347c were frequently recognized, defined by IFN-gamma production, in blood from healthy individuals exposed to M.tb (health care workers). A different recognition pattern was found for IL-17 production in blood from M.tb exposed individuals responding to TB10.4 (Rv0288), Ag85B (Rv1886c) and the PPE family members Rv0978c and Rv1917c. Conclusions: The pattern of immune target recognition is different in regard to IFN-gamma and IL-17 production to defined molecular M.tb targets in PBMCs from individuals frequently exposed to M.tb. The data represent the first mapping of cellular immune responses against M.tb targets in TB patients from Honduras.
Resumo:
Data clustering is a common technique for statistical data analysis, which is used in many fields, including machine learning and data mining. Clustering is grouping of a data set or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait according to some defined distance measure. In this paper we present the genetically improved version of particle swarm optimization algorithm which is a population based heuristic search technique derived from the analysis of the particle swarm intelligence and the concepts of genetic algorithms (GA). The algorithm combines the concepts of PSO such as velocity and position update rules together with the concepts of GA such as selection, crossover and mutation. The performance of the above proposed algorithm is evaluated using some benchmark datasets from Machine Learning Repository. The performance of our method is better than k-means and PSO algorithm.
Resumo:
Design and development of a piezoelectric polyvinylidene fluoride (PVDF) thin film based nasal sensor to monitor human respiration pattern (RP) from each nostril simultaneously is presented in this paper. Thin film based PVDF nasal sensor is designed in a cantilever beam configuration. Two cantilevers are mounted on a spectacle frame in such a way that the air flow from each nostril impinges on this sensor causing bending of the cantilever beams. Voltage signal produced due to air flow induced dynamic piezoelectric effect produce a respective RP. A group of 23 healthy awake human subjects are studied. The RP in terms of respiratory rate (RR) and Respiratory air-flow changes/alterations obtained from the developed PVDF nasal sensor are compared with RP obtained from respiratory inductance plethysmograph (RIP) device. The mean RR of the developed nasal sensor (19.65 +/- A 4.1) and the RIP (19.57 +/- A 4.1) are found to be almost same (difference not significant, p > 0.05) with the correlation coefficient 0.96, p < 0.0001. It was observed that any change/alterations in the pattern of RIP is followed by same amount of change/alterations in the pattern of PVDF nasal sensor with k = 0.815 indicating strong agreement between the PVDF nasal sensor and RIP respiratory air-flow pattern. The developed sensor is simple in design, non-invasive, patient friendly and hence shows promising routine clinical usage. The preliminary result shows that this new method can have various applications in respiratory monitoring and diagnosis.
Resumo:
Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarm management in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web click streams and so on. In this paper, we address the discovery of serial episodes. In the episodes context, there have been multiple ways to quantify the frequency of an episode. Most of the current algorithms for episode discovery under various frequencies are apriori-based level-wise methods. These methods essentially perform a breadth-first search of the pattern space. However currently there are no depth-first based methods of pattern discovery in the frequent episode framework under many of the frequency definitions. In this paper, we try to bridge this gap. We provide new depth-first based algorithms for serial episode discovery under non-overlapped and total frequencies. Under non-overlapped frequency, we present algorithms that can take care of span constraint and gap constraint on episode occurrences. Under total frequency we present an algorithm that can handle span constraint. We provide proofs of correctness for the proposed algorithms. We demonstrate the effectiveness of the proposed algorithms by extensive simulations. We also give detailed run-time comparisons with the existing apriori-based methods and illustrate scenarios under which the proposed pattern-growth algorithms perform better than their apriori counterparts. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider the setting of the pattern maximum likelihood (PML) problem studied by Orlitsky et al. We present a well-motivated heuristic algorithm for deciding the question of when the PML distribution of a given pattern is uniform. The algorithm is based on the concept of a ``uniform threshold''. This is a threshold at which the uniform distribution exhibits an interesting phase transition in the PML problem, going from being a local maximum to being a local minimum.
Resumo:
Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.
Resumo:
This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Ro(m)), i.e., Ro(m) <= 1 and Ro(m) > 1. Flow modes with Ro(m) <= 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (S-G) is increased by similar to 20% and similar to 40%, respectively, from the baseline open-bubble state. However, the flow modes with Ro(m) > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Ro(m) and the swirl momentum factor (xi). In essence, xi represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that xi increases by similar to 100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the S-G regime where open bubble state is seen. This results from the fact that flow modes with Ro(m) <= 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Ro(m) > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%-40% rise in xi in the critical swirl number range. (C) 2014 AIP Publishing LLC.
Resumo:
Oxidation of small organic molecules in a fuel cell is a viable method for energy production. However, the key issue is the development of suitable catalysts that exhibit high efficiencies and remain stable during operation. Here, we demonstrate that amine-modified ZnO nanorods on which ultrathin Au nanowires are grown act as an excellent catalyst for the oxidation of ethanol. We show that the modification of the ZnO nanorods with oleylamine not only modifies the electronic structure favorably but also serves to anchor the Au nanowires on the nanorods. The adsorption of OH- species on the Au nanowires that is essential for ethanol oxidation is facilitated at much lower potentials as compared to bare Au nanowires leading to high activity. While ZnO shows negligible electrocatalytic activity under normal conditions, there is significant enhancement in the activity under light irradiation. We demonstrate a synergistic enhancement in the photoelectrocatalytic activity of the ZnO/Au nanowire hybrid and provide mechanistic explanation for this enhancement based on both electronic as well as geometric effects. The principles developed are applicable for tuning the properties of other metal/semiconductor hybrids with potentially interesting applications beyond the fuel cell application demonstrated here.
Resumo:
We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 mu m and inter-sheet separation of 380 mu m. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (approximate to 4 mu m) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. (C) 2015 Optical Society of America
Resumo:
We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.