223 resultados para Generalized ordinary differential equations
Resumo:
We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.
Resumo:
The unsteady laminar incompressible three-dimensional boundary layer flow and heat transfer on a flat plate with an attached cylinder have been studied when the free stream velocity components and wall temperature vary inversely as linear and quadratic functions of time, respectively. The governing semisimilar partial differential equations with three independent variables have been solved numerically using a quasilinear finite-difference scheme. The results indicate that the skin friction increases with parameter λ which characterizes the unsteadiness in the free stream velocity and the streamwise distance Image , but the heat transfer decreases. However, the skin friction and heat transfer are found to change little along Image . The effect of the Prandtl number on the heat transfer is found to be more pronounced when λ is small, whereas the effect of the dissipation parameter is more pronounced when λ is comparatively large.
Resumo:
The hydromagnetic spinup or spindown of an incompressible, rotating, electrically conducting fluid over an infinite insulated disk with an applied magnetic field is studied when the impulsive motion is imparted either to the fluid or to the disk. The nonlinear partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. It is found that the spinup (or spindown) time due to impulsive motion of the disk is much shorter than the spinup (or spindown) time due to the impulsive motion of the distant fluid. The spinup (or spindown) time for the hydromagnetic case is comparatively smaller than the corresponding nonmagnetic case. Spindown is not merely a mirror reflection of spinup. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
A pair of semi-linear hyperbolic partial differential equations governing the slow variations in amplitude and phase of a quasi-monochromatic finite-amplitude Love-wave on an isotropic layered half-space is derived using the method of multiple-scales. The analysis of the exact solution of these equations for a signalling problem reveals that the amplitude of the wave remains constant along its characteristic and that the phase of the wave increases linearly behind the wave-front.
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.
Resumo:
In this paper, an attempt is made to obtain the free vibration response of hybrid, laminated rectangular and skew plates. The Galerkin technique is employed to obtain an approximate solution of the governing differential equations. It is found that this technique is well suited for the study of such problems. Results are presented in a graphical form for plates with one pair of opposite edges simply supported and the other two edges clamped. The method is quite general and can be applied to any other boundary conditions.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
A perturbation technique is used to determine the stress concentration around reinforced curvilinear holes in thin pressurized spherical shells. Starting from the governing differential equations for thin shallow spherical shells, a solution is first obtained for a circular hole. The solution for an arbitrary shaped curvilinear hole is then obtained as a first-order perturbation over the circular hole solution using the conformal mapping technique. The effects of a large number of parameters involved in the design of a reinforcement around cutouts in shells are studied. The problems of symmetric and eccentric reinforcements are also considered. The results obtained would be very helpful in the design of an efficient reinforcement for elliptical and square holes in thin shallow spherical shells.
Resumo:
In this paper a method of solving certain third-order non-linear systems by using themethod of ultraspherical polynomial approximation is proposed. By using the method of variation of parameters the third-order equation is reduced to three partial differential equations. Instead of being averaged over a cycle, the non-linear functions are expanded in ultraspherical polynomials and with only the constant term retained, the equations are solved. The results of the procedure are compared with the numerical solutions obtained on a digital computer. A degenerate third-order system is also considered and results obtained for the above system are compared with numerical results obtained on the digital computer. There is good agreement between the results obtained by the proposed method and the numerical solution obtained on digital computer.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
The nonlinear mode coupling between two co-directional quasi-harmonic Rayleigh surface waves on an isotropic solid is analysed using the method of multiple scales. This procedure yields a system of six semi-linear hyperbolic partial differential equations with the same principal part governing the slow variations in the (complex) amplitudes of the two fundamental, the two second harmonic and the two combination frequency waves at the second stage of the perturbation expansion. A numerical solution of these equations for excitation by monochromatic signals at two arbitrary frequencies, indicates that there is a continuous transfer of energy back and forth among the fundamental, second harmonic and combination frequency waves due to mode coupling. The mode coupling tends to be more pronounced as the frequencies of the interacting waves approach each other.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.
Resumo:
The unsteady laminar compressible boundary-layer flow in the immediate vicinity of a two-dimensional stagnation point due to an incident stream whose velocity varies arbitrarily with time is considered. The governing partial differential equations, involving both time and the independent similarity variable, are transformed into new co-ordinates with finite ranges by means of a transformation which maps an infinite interval into a finite one. The resulting equations are solved by converting them into a matrix equation through the application of implicit finite-difference formulae. Computations have been carried out for two particular unsteady free-stream velocity distributions: (1) a constantly accelerating stream and (2) a fluctuating stream. The results show that in the former case both the skin-friction and the heat-transfer parameter increase steadily with time after a certain instant, while in the latter they oscillate thus responding to the fluctuations in the free-stream velocity.
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.