247 resultados para Generalizability theory
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
An anomalous gauge theory can be reformulated in a gauge invariant way without any change in its physical content. This is demonstrated here for the exactly soluble chiral Schwinger model. Our gauge invariant version is very different from the Faddeev-Shatashvili proposal [L.D. Faddeev and S.L. Shatashvili, Theor. Math. Phys. 60 (1984) 206] and involves no additional gauge-group-valued fields. The status of the "gauge" A0=0 sometimes used in anomalous theories is also discussed and justified in our reformulation.
Resumo:
Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
The striking lack of observable variation of the volume fraction with height in the center of a granular flow down an inclined plane is analysed using constitutive relations obtained from kinetic theory. It is shown that the rate of conduction in the granular energy balance equation is O(delta(2)) smaller than the rate of production of energy due to mean shear and the rate of dissipation due to inelastic collisions, where the small parameter delta = (d/(1 - e(n))H-1/2), d is the particle diameter, en is the normal coefficient of restitution and H is the thickness of the flowing layer. This implies that the volume fraction is a constant in the leading approximation in an asymptotic analysis in small delta. Numerical estimates of both the parameter delta and its pre-factor are obtained to show that the lack of observable variation of the volume fraction with height can be explained by constitutive relations obtained from kinetic theory.
Resumo:
Infrared spectra of atmospherically important dimethylquinolines (DMQs), namely 2,4-DMQ, 2,6-DMQ, 2,7-DMQ, and 2,8-DMQ in the gas phase at 80 degrees C were recorded using a long variable path-length cell. DFT calculations were carried out to assign the bands in the experimentally observed spectra at the B3LYP/6-31G* level of theory. The spectral assignments particularly for the C-H stretching modes could not be made unambiguously using calculated anharmonic or scaled harmonic frequencies. To resolve this problem, a scaled force field method of assignment was used. Assignment of fundamental modes was confirmed by potential energy distributions (PEDs) of the normal modes derived by the scaled force fields using a modified version of the UMAT program in the QCPE package. We demonstrate that for large molecules such as the DMQs, the scaling of the force field is more effective in arriving at the correct assignment of the fundamentals for a quantitative vibrational analysis. An error analysis of the mean deviation of the calculated harmonic, anharmonic, and force field fitted frequencies from the observed frequency provides strong evidence for the correctness of the assignment.
Resumo:
In the framework of the ECSK [Einstein-Cartan-Sciama-Kibble] theory of cosmology, a scalar field nonminimally coupled to the gravitational field is considered. For a Robertson-Walker open universe (k=0) in the radiation era, the field equations admit a singularity-free solution for the scale factor. In theory, the torsion is generated through nonminimal coupling of a scalar field to the gravitation field. The nonsingular nature of the cosmological model automatically solves the flatness problem. Further absence of event horizon and particle horizon explains the high degree of isotropy, especially of 2.7-K background radiation.
Resumo:
The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.
Resumo:
The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.
Resumo:
In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.
Resumo:
Mandelstam�s argument that PCAC follows from assigning Lorentz quantum numberM=1 to the massless pion is examined in the context of multiparticle dual resonance model. We construct a factorisable dual model for pions which is formulated operatorially on the harmonic oscillator Fock space along the lines of Neveu-Schwarz model. The model has bothm ? andm ? as arbitrary parameters unconstrained by the duality requirement. Adler self-consistency condition is satisfied if and only if the conditionm?2?m?2=1/2 is imposed, in which case the model reduces to the chiral dual pion model of Neveu and Thorn, and Schwarz. The Lorentz quantum number of the pion in the dual model is shown to beM=0.
Resumo:
General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.