267 resultados para Gemstone Team PRESSURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pressure dependence of the chlorine NQR frequency in NaClo3 has been investigated up to 20 k bar hydrostatic pressure. A distinct break in slope in the pressure dependence of the resonance frequency is observed near 11 k bar. This is attributed to a phase transition reported earlier by Bridgman in this pressure region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the study and implementation of a low-cost system to detect the occurrences of tsunamis at significantly smaller laboratory scale. The implementation is easily scalable for real-time deployment. Information reported in this paper includes the experimentally recorded response from the pressure sensor giving an indication as well as an alarm at remote place for the detection of water turbulence similar to the case of tsunami. It has been found that the system developed works very well in the laboratory scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of glasses were prepared, xNa2O, yZnO, 100 - x - yB2O3 and 30 - xNa2O, xZnO, 70B2O3 (mol%). The temperature dependence of the direct current resistivity was measured from room temperature to about 700 K and in both series of glasses we observed a simple Arrhenius type of temperature dependence. However, the resistivity of the binary alkali glass increased steeply by as much as two orders of magnitude with the addition of even a small quantity of ZnO and remained virtually unaffected by further addition of ZnO. The resistivity decreases gradually with increasing pressure in Na2O-B2O3 but increases with increasing pressure with the addition of ZnO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric adhesive layers are employed for bonding two components in a wide variety of technological applications, It has been observed that, unlike in metals, the yield behavior of polymers is affected by the state of hydrostatic stress. In this work, the effect of pressure sensitivity of yielding and layer thickness on quasistatic interfacial crack growth in a ductile adhesive layer is investigated. To this end, finite deformation, finite element analyses of a cracked sandwiched layer are carried out under plane strain, small-scale yielding conditions for a wide range of mode mixities. The Drucker-Prager constitutive equations are employed to represent the behavior of the layer. Crack propagation is simulated through a cohesive zone model, in which the interface is assumed to follow a prescribed traction-separation law. The results show that for a given mode mixity, the steady state Fracture toughness [K](ss) is enhanced as the degree of pressure sensitivity increases. Further, for a given level of pressure sensitivity, [K](ss) increases steeply as mode Il loading is approached. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the effect of hydrostatic pressure on the incommensurate lattice modulation at 153 K in K3Cu8S6, electrical resistivity measurements are done at 1.0 GPa, 1.5 GPa and 2.2 GPa. The sharp increase in resistance at 2.2 GPa is attributed to the incommensurate to commensurate transition. This is further confirmed by the non-linear I–V characteristics at 2.2 GPa showing the driven motion of the commensurate charge density wave in the presence of an external electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical resistivity of bulk GexTe100-x glasses has been measured as a function of temperature and pressure. Under high pressure, all the glasses were found to undergo sharp discontinuous transitions from glassy semiconductors to crystalline metal. Several of the observed properties such as the transition pressure, conductivity activation energy and pre-exponential factor, exhibit anomalous trends at a composition x = 20. These results suggest that the x = 20 composition in the Ge-Te system should possess salient structural features. A model based on the unusual stability of structural units is proposed for explaining the anomaly at 20 at.% Ge concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wide-line c.w. proton resonance investigations have been carried out on the ammonium halides, namely, ammonium chloride, ammonium bromide and ammonium iodide in the temperature range between 77 and 300 K and in the pressure range between 1 bar and 14 kbar. It has been found that the narrow iodide spectrum at 77 K broadens under the application of hydrostatic pressure. The barrier height for the ammonium ion motion in ammonium iodide under pressure has been estimated by carrying out a temperature variation study. The rotational potential for the motion of ammonium ion in ammonium iodide at 1 bar and 14 kbar has been calculated using earlier theoretical models and compared with values calculated for ammonium chloride and bromide. The barrier height in the case of ammonium iodide under pressure is found to be of the same order of magnitude as the value obtained in the case of ammonium bromide at atmospheric pressure indicating that the high pressure phase of ammonium iodide is likely to have the same structure as the low temperature ordered CsCl phase found in the case of the chloride and the bromide. The increase in the potential barrier height in the case of ammonium iodide under pressure indicates that the reorientational motion executed by the ammonium ions is inhibited by the application of pressure. This is also confirmed by the broadening of the spectral line at 77 K under the application of pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integral diaphragm pressure transducers machined out of precipitation hardened martensite stainless steel (APX4) are widely used for propellant pressure measurements in space applications. These transducers are expected to exhibit dimensional stability and linearity for their entire useful life. These vital factors are very critical for the reliable performance and dependability of the pressure transducers. However, these transducers invariably develop internal stresses during various stages of machining. These stresses have an adverse effect on the performance of the transducers causing deviation from linearity. In order to eliminate these possibilities, it was planned to cryotreat the machined transducers to improve both the long-term linearity and dimensional stability. To study these effects, an experimental cryotreatment unit was designed and developed based on the concept of indirect cooling using the concept of cold nitrogen gas forced closed loop convection currents. The system has the capability of cryotreating large number of samples for varied rates of cooling, soaking and warm-up. After obtaining the initial levels of residual stress and retained austenite using X-ray diffraction techniques, the pressure transducers were cryotreated at 98 K for 36 h. Immediately after cryotreatment, the transducers were tempered at 510 degrees C for 3 h in vacuum furnace. Results after cryo treatment clearly indicated significant reduction in residual stress levels and conversion of retained austenite to martensite. These changes have brought in improvements in long term zero drift and dimensional stability. The cryotreated pressure transducers have been incorporated for actual space applications. (c) 2010 Published by Elsevier Ltd.