176 resultados para GENERALIZED 2ND LAW
Resumo:
Numerical results are presented for the free-convection boundary-layer equations of the Ostwald de-Waele non-Newtonian power-law type fluids near a three-dimensional (3-D) stagnation point of attachment on an isothermal surface. The existence of dual solutions that are three-dimensional in nature have been verified by means of a numerical procedure. An asymptotic solution for very large Prandtl numbers has also been derived. Solutions are presented for a range of values of the geometric curvature parameter c, the power-law index n, and the Prandtl number Pr.
Resumo:
The paper examines the suitability of the generalized data rule in training artificial neural networks (ANN) for damage identification in structures. Several multilayer perceptron architectures are investigated for a typical bridge truss structure with simulated damage stares generated randomly. The training samples have been generated in terms of measurable structural parameters (displacements and strains) at suitable selected locations in the structure. Issues related to the performance of the network with reference to hidden layers and hidden. neurons are examined. Some heuristics are proposed for the design of neural networks for damage identification in structures. These are further supported by an investigation conducted on five other bridge truss configurations.
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a $x^{2/3} ~$ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.
Resumo:
Analytical solutions of the generalized Bloch equations for an arbitrary set of initial values of the x, y, and z magnetization components are given in the rotating frame. The solutions involve the decoupling of the three coupled differential equations such that a third-order differential equation in each magnetization variable is obtained. In contrast to the previously reported solutions given by Torrey, the present attempt paves the way for more direct physical insight into the behavior of each magnetization component. Special cases have been discussed that highlight the utility of the general solutions. Representative trajectories of magnetization components are given, illustrating their behavior with respect to the values of off-resonance and initial conditions. (C) 1995 Academic Press, Inc.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
During the last decade, developing countries such as India have been exhibiting rapid increase in human population and vehicles, and increase in road accidents. Inappropriate driving behaviour is considered one of the major causes of road accidents in India as compared to defective geometric design of pavement or mechanical defects in vehicles. It can result in conditions such as lack of lane discipline, disregard to traffic laws, frequent traffic violations, increase in crashes due to self-centred driving, etc. It also demotivates educated drivers from following good driving practices. Hence, improved driver behaviour can be an effective countermeasure to reduce the vulnerability of road users and inhibit crash risks. This article highlights improved driver behaviour through better driver education, driver training and licensing procedures along with good on-road enforcement; as an effective countermeasure to ensure road safety in India. Based on the review and analysis, the article also recommends certain measures pertaining to driver licensing and traffic law enforcement in India aimed at improving road safety.
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent studies on the Portevin-Le Chatelier effect report an intriguing crossover phenomenon from low-dimensional chaotic to an infinite-dimensional scale-invariant power law regime in experiments on CuAl single crystals and AlMg polycrystals, as function of strain rate. We devise fully dynamical model which reproduces these results. At low and medium strain rates, the model is chaotic with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, power law statistics for the magnitudes and durations of the stress drops emerge as in experiments and concomitantly, the largest Lyapunov exponent is zero.
Resumo:
A comprehensive scheme has been developed for the prediction of radiation from engine exhaust and its incidence on an arbitrarily located sensor. Existing codes have been modified for the simulation of flows inside nozzles and jets. A novel view factor computation scheme has been applied for the determination of the radiosities of the discrete panels of a diffuse and gray nozzle surface. The narrowband model has been used to model the radiation from the gas inside the nozzle and the nonhomogeneous jet. The gas radiation from the nozzle inclusive of nozzle surface radiosities have been used as boundary conditions on the jet radiation. Geometric modeling techniques have been developed to identify and isolate nozzle surface panels and gas columns of the nozzle and jet to determine the radiation signals incident on the sensor. The scheme has been validated for intensity and heat flux predictions, and some useful results of practical importance have been generated to establish its viability for infrared signature analysis of jets.
Resumo:
We study the statistical properties of spatially averaged global injected power fluctuations for Taylor-Couette flow of a wormlike micellar gel formed by surfactant cetyltrimethylammonium tosylate. At sufficiently high Weissenberg numbers the shear rate, and hence the injected power p(t), at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (PDF) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian PDFs can be well described by a universal, large deviation functional form given by the generalized Gumbel distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence.
Resumo:
We derive the computational cutoff rate, R-o, for coherent trellis-coded modulation (TCM) schemes on independent indentically distributed (i.i.d.) Rayleigh fading channels with (K, L) generalized selection combining (GSC) diversity, which combines the K paths with the largest instantaneous signal-to-noise ratios (SNRs) among the L available diversity paths. The cutoff rate is shown to be a simple function of the moment generating function (MGF) of the SNR at the output of the (K, L) GSC receiver. We also derive the union bound on the bit error probability of TCM schemes with (K, L) GSC in the form of a simple, finite integral. The effectiveness of this bound is verified through simulations.