144 resultados para GAS-DENSITY
Resumo:
A modified density matrix renormalization group (DMRG) algorithm is applied to the zigzag spin-1/2 chain with frustrated antiferromagnetic exchange J(1) and J(2) between first and second neighbors. The modified algorithm yields accurate results up to J(2)/J(1) approximate to 4 for the magnetic gap Delta to the lowest triplet state, the amplitude B of the bond order wave phase, the wavelength lambda of the spiral phase, and the spin correlation length xi. The J(2)/J(1) dependences of Delta, B, lambda, and xi provide multiple comparisons to field theories of the zigzag chain. The twist angle of the spiral phase and the spin structure factor yield additional comparisons between DMRG and field theory. Attention is given to the numerical accuracy required to obtain exponentially small gaps or exponentially long correlations near a quantum phase transition.
Resumo:
Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E-11 and E-21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5-10 meV below the E-21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E-21 transition. The PL intensity of all the three transitions E-11, FES and E-21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E-11 and E-21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.
Resumo:
When a high velocity gas jet is introduced into a packed bed a cavity is formed. The size of the cavity shows hysteresis on increasing and decreasing gas flow rates. This hysteresis leads to different cavity sizes at same gas flow rate depending on the bed history. The size of cavity affects the gas flow profiles in the packed bed. In this study the cavity size hysteresis phenomenon has been modeled using discrete element method along with turbulent gas flow. A reasonable agreement has been found between computed and experimental results on cavity size ysteresis. The effect of various parameters, such as nozzle height from the bed bottom and packing height, on the cavity size hysteresis has been studied. It is found that inter-particle interaction forces along with gas drag and bed porosity play an important role in describing the cavity size hysteresis. The injection of gas flow allows the particles to go to an unconstrained state than they were previously in, and their ability to remain in that state, even under decreased gas drag force, leads to the phenomenon of cavity size hysteresis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
XML has emerged as a medium for interoperability over the Internet. As the number of documents published in the form of XML is increasing there is a need for selective dissemination of XML documents based on user interests. In the proposed technique, a combination of Self Adaptive Migration Model Genetic Algorithm (SAMCA)[5] and multi class Support Vector Machine (SVM) are used to learn a user model. Based on the feedback from the users the system automatically adapts to the user's preference and interests. The user model and a similarity metric are used for selective dissemination of a continuous stream of XML documents. Experimental evaluations performed over a wide range of XML documents indicate that the proposed approach significantly improves the performance of the selective dissemination task, with respect to accuracy and efficiency.
Resumo:
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.
Resumo:
Using the linearized BGK model and the method of moments of half-range distribution functions the temperature jumps at two plates are determined, and it is found that the results are in fair agreement with those of Gross and Ziering, and Ziering.
Resumo:
The electron temperature structure in a weakly ionized plasma is studied allowing the degree of ionization to vary across the shock wave. The values of the electron temperature and the downstream equilibrium temperature obtained with variable ionization are less than those for frozen ionization. The electron temperature rises sharply behind the shock for variable ionization while a gradual increase is predicted by frozen ionization.
Resumo:
We report new radio continuum and 21 cm HI observations using the Giant Metrewave Radio Telescope (GMRT) of the group Holmberg 124 ( Ho 124) comprising four late-type galaxies, namely NGC 2820, Mrk 108, NGC 2814 and NGC 2805. The three galaxies, NGC 2820, Mrk 108 and NGC 2814 which are closely located in the sky plane have clearly undergone tidal interactions as seen from the various morphological tidal signatures and debris. Moreover we note various features in the group members which we believe might be due to ram pressure. In this paper, we describe four interesting results emerging from our observations: a) detection of the tidal radio continuum bridge at 330 MHz connecting the galaxies NGC 2820+ Mrk 108 with NGC 2814. The radio bridge was discovered at 1465 MHz by van der Hulst & Hummel ( 1985, A& A, 150, 17). We find that the bridge has a fairly steep spectrum with a spectral index alpha(S proportional to nu(alpha)) of - 1.8(-0.2)(+0.3) which is much steeper than the - 0.8 quoted by van der Hulst & Hummel ( 1985); b) detection of other tidal features like the tilted HI and radio continuum disk of NGC 2814, a HI streamer and a radio continuum tail arising from the south of NGC 2814. We also report the detection of a possible tidal dwarf galaxy in HI; c) sharp truncation in the HI distribution in the south of NGC 2820 and in the HI and radio continuum distribution in the north of NGC 2814. The optical disks in both the cases look undisturbed. As pointed out by Davis et al. ( 1997, AJ, 114, 613), ram pressure affects different components of the interstellar medium to varying degrees. Simple estimates of pressure in different components of the interstellar medium ( radio continuum, Ha and HI) in NGC 2820 indicate that ram pressure will significantly influence HI; d) detection of a large one-sided HI loop to the north of NGC 2820. No radio continuum emission or Ha emission is associated with the HI loop. We discuss various scenarios for the origin of this loop including a central starburst, ram pressure stripping and tidal interaction. We do not support the central starburst scenario since the loop is not detected in ionized gas. Using the upper limit on X-ray luminosity of Ho 124 (Mulchaey et al. 2003, ApJS, 145, 39), we estimate an upper limit on the intragroup medium (IGrM) density of 8.8 x 10(-4) cm(-3). For half this electron density, we estimate the ram pressure force of the IGrM to be comparable to the gravitational pull of the disk of NGC 2820. Since tidal interaction has obviously influenced the group, we suggest that the loop could have formed by ram pressure stripping if tidal effects had reduced the surface density of HI in NGC 2820. From the complex observational picture of Ho 124 and the numerical estimates, we suggest that the evolution of the Ho 124 group may be governed by both tidal forces due to the interaction and the ram pressure due to motion of the member galaxies in the IGrM and that the IGrM densities should not be too low (i.e. >= 4 x 10(-4)). However this needs to be verified by further observations.
Resumo:
Approximate solutions of the B-G-K model equation are obtained for the structure of a plane shock, using various moment methods and a least squares technique. Comparison with available exact solution shows that while none of the methods is uniformly satisfactory, some of them can provide accurate values for the density slope shock thickness delta n . A detailed error analysis provides explanations for this result. An asymptotic analysis of delta n for largeMach numbers shows that it scales with theMaxwell mean free path on the hot side of the shock, and that their ratio is relatively insensitive to the viscosity law for the gas.
Resumo:
The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.
Resumo:
The Ramberg-Osgood type constitutive law for creep suggested by Iyengar2 has been verified on high-density polyethylene. The time functions are evaluated from the experimental data of Scheweiker and Sidebottom3. It is found that the creep behaviour of the above material can be represented by the Ramberg-Osgood type law.
Resumo:
The viscosity of five binary gas mixtures - namely, oxygen-hydrogen, oxygen-nitrogen, oxygen-carbon dioxide, carbon dioxide-nitrogen, carbon dioxide-hydrogen - and two ternary mixtures - oxygen-nitrogen-carbon dioxide and oxygen-hydrogen-carbon dioxide - were determined at ambient temperature and pressure using an oscillating disk viscometer. The theoretical expressions of several investigators were in good agreement with the experimental results obtained with this viscometer. In the case of the ternary gas mixture oxygen-carbon dioxide-nitrogen, as long as the volumetric ratio of oxygen to carbon dioxide in the mixture was maintained at 11 to 8, the viscosity of the ternary mixture at ambient temperature and pressure remained constant irrespective of the percentage of nitrogen present in the mixture.