107 resultados para Forests, Recreational use of.
Resumo:
Innovative bi-electrolyte solid-state cells incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3) y (CaF2) 1-y (y = 0 to 0.32) were used for measurement of the standard Gibbs energy of formation of hexagonal La0.885Al11.782O19 and cubic LaAlO3 from component binary oxides La2O3 and alpha-Al2O3 in the temperature range from 875 to 1175 K. The cells were designed based on experimentally verified relevant phase relations in the systems La2O3-Al2O3LaF3 and CaF2-LaF3. The results can be summarized as: 5.891 alpha-Al2O3 + 0.4425 La2O3 (A-rare earth)-> La0.885Al11.782O19 (hex), Delta G(f(ox))(degrees)(+/- 2005)/Jmol(-1) = -80982 + 7.313(T/K); 1/2 La2O3 (A-rare earth) + 1/2 a-Al2O3 -> LaAlO3 (cubic), Delta G(f(ox))(degrees)(+/- 2100)/Jmol(-1) = -59810 + 4.51(T/K). Electron probe microanalysis was used to ascertain the non-stoichiometric range of the hexaaluminate phase. The results are critically analyzed in the light of earlier electrochemical measurements. Several imperfections in the electrochemical cells used by former investigators are identified. Data obtained in the study for LaAlO3 are consistent with calorimetric enthalpy of formation and entropy derived from heat capacity data. Estimated are the standard entropy and the standard enthalpy of formation from elements of hexagonal La0.885Al11.782O19 and rhombohedral LaAlO3 at 298.15 K. c 2014 The Electrochemical Society. All rights reserved.
Resumo:
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential ``edge-on'' packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V-1 s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.
Resumo:
In Northern Vietnam, organic fertilization programmes are being tested to restore soil fertility and reduce soil erosion. However, the amendment of organic matter in soil is also associated with the development of the invasive earthworm species Dichogaster bolaui. The objective of this study was to investigate the influence of organic matter amendment quality (compost vs. vermicompost) on D. bolaui. Our study confirmed D. bolaui development in organic patches in the field. However, we also observed that the flat-backed millipede Asiomorpha coarctata proliferated in these organic patches. Native to Asia, this millipede species is also considered as invasive in America. Both D. bolaui and A. coarctata more rapidly colonized compost than vermicompost patches. A laboratory experiment confirmed this trend and showed the limited development of D. bolaui in vermicompost. This is probably because of the decreased palatability of this substrate to soil fauna. In conclusion, any restoration practice that aims to increase the organic stocks in soils degraded by erosion should consider the quality of the organic amendment. In Northern Vietnam, vermicompost may be the preferred substrate for restoring soils while limiting the spread of D. bolaui. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.
Resumo:
Crystallographic texture is perceived to play an important role in controlling material properties. However, the influence of texture in modulating the properties of biomedical materials has not been well investigated. In this work, commercially pure titanium (cp-Ti) was processed through six different routes to generate a variety of textures. The effect of texture on mechanical properties, corrosion behavior, cell proliferation and osteogenesis was characterized for potential use in orthopedic applications. The presence of closely packed, low-energy crystallographic planes at the material surface was influenced by the volume fraction of the components in the overall texture, thereby influencing surface energy and corrosion behavior. Texture modulated osteoblast proliferation through variations in surface water wettability. It also affected mineralization by possibly influencing the coherency between the substrate and calcium phosphate deposits. This study demonstrates that crystallographic texture can be an important tool in improving the properties of biomaterials to achieve the enhanced performance of biomedical implants.
Resumo:
Magnesium and its alloys are an emerging class of resorbable materials for orthopedic and cardiovascular applications. The typical strategy underlying the development of these materials involves the control of material processing routes and the addition of alloying elements. Crystallographic texture is known to control bulk mechanical as well as surface properties. However, its role in determining the properties of magnesium for implant materials has not been well studied. In this work, an extruded rod of pure magnesium was cut in multiple directions to generate samples with different textures. It was found that texture significantly affected the strength and ductility of magnesium. Corrosion rates in Hank's solution decreased with the increased presence of low energy basal planes at the surface. In vitro cell studies revealed that changes in texture did not induce cytotoxicity. Thus, the control of texture in magnesium based implants could be used to tailor the mechanical properties and the resorption rates without compromising cytocompatibility. This study elucidates the importance of texture in the use of magnesium as a resorbable biomaterial.
Resumo:
The concurrent planning of sequential saccades offers a simple model to study the nature of visuomotor transformations since the second saccade vector needs to be remapped to foveate the second target following the first saccade. Remapping is thought to occur through egocentric mechanisms involving an efference copy of the first saccade that is available around the time of its onset. In contrast, an exocentric representation of the second target relative to the first target, if available, can be used to directly code the second saccade vector. While human volunteers performed a modified double-step task, we examined the role of exocentric encoding in concurrent saccade planning by shifting the first target location well before the efference copy could be used by the oculomotor system. The impact of the first target shift on concurrent processing was tested by examining the end-points of second saccades following a shift of the second target during the first saccade. The frequency of second saccades to the old versus new location of the second target, as well as the propagation of first saccade localization errors, both indices of concurrent processing, were found to be significantly reduced in trials with the first target shift compared to those without it. A similar decrease in concurrent processing was obtained when we shifted the first target but kept constant the second saccade vector. Overall, these results suggest that the brain can use relatively stable visual landmarks, independent of efference copy-based egocentric mechanisms, for concurrent planning of sequential saccades.
Resumo:
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence-search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino-acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as Protein Blocks (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence-search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z-score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales-up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web-server that is freely available at http://www.bo-protscience.fr/forsa.
Resumo:
Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Delta arr). The M. smegmatis Delta arr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Delta arr. The growth profiles and mutation spectrum of Delta arr and, Delta arr combined with Delta udgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of Delta fpg Delta arr strain differed somewhat from that of the Delta fpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Delta arr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.
Resumo:
Internal analogies are created if the knowledge of source domain is obtained only from the cognition of designers. In this paper, an understanding of the use of internal analogies in conceptual design is developed by studying: the types of internal analogies; the roles of internal analogies; the influence of design problems on the creation of internal analogies; the role of experience of designers on the use of internal analogies; the levels of abstraction at which internal analogies are searched in target domain, identified in source domain, and realized in the target domain; and the effect of internal analogies from the natural and artificial domains on the solution space created using these analogies. To facilitate this understanding, empirical studies of design sessions from earlier research, each involving a designer solving a design problem by identifying requirements and developing conceptual solutions, without using any support, are used. The following are the important findings: designers use analogies from the natural and artificial domains; analogies are used for generating requirements and solutions; the nature of the design problem influences the use of analogies; the role of experience of designers on the use of analogies is not clearly ascertained; analogical transfer is observed only at few levels of abstraction while many levels remain unexplored; and analogies from the natural domain seem to have more positive influence than the artificial domain on the number of ideas and variety of idea space.
Resumo:
Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Nearly 50% of India's population depends on variants of pit-toilet systems for human waste disposal. Nitrate contamination of groundwater by pit-toilet leachate is a major environmental concern in the country as it sources a major proportion (50-80%) of potable water from aquifers. Therefore, minimizing nitrate contamination of groundwater due to leachate infiltration from pit-toilet systems is essential. Batch and column experiments demonstrated the capability of bentonite-enhanced sand (BES) specimens to reduce nitrate concentrations in synthetic solutions (initial NO3-N concentration = 22.7 mg/L, C/N = 3) by about 85-90% in 10 to 24 hour by a heterotrophic denitrification process. Based on the laboratory results, it is recommended that use of a BES-permeable reactive barrier layer at the base of pit-toilets will facilitate heterotrophic denitrification and mitigate nitrate contamination of the underlying aquifer.
Resumo:
The results of the laboratory investigation performed on clay beds reinforced with natural (bamboo) and commercial (geosynthetics) reinforcement materials are reported in this paper. To use bamboo effectively, three-dimensional cells (similar to geocells) and two-dimensional grids (similar to geogrids) are formed using bamboo (termed bamboo cells and bamboo grids, respectively). The performance of clay beds reinforced with bamboo cells and bamboo grids is compared with that of clay beds reinforced with geocells and geogrids. The bearing capacity of the clay bed increased by six times when a combination of geocell and geogrid was used. The ultimate bearing capacity of the clay bed reinforced with bamboo cell and bamboo grid was found to be 1.3 times more than that of clay bed reinforced with geocell and geogrid. In addition, substantial reduction in the footing settlement and the surface deformation was observed. The tensile strength and surface roughness of bamboo were found to be nine times and three times, respectively, higher than geocell materials. The bamboo was treated chemically to increase its durability. Although the performance of bamboo was reduced by 15-20% after the chemical treatment, its performance was better than its commercial counterparts. (C) 2014 American Society of Civil Engineers.
Resumo:
This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.