106 resultados para FINITE-ELEMENT MODEL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is concerned with the evolution of haploid organisms that reproduce asexually. In a seminal piece of work, Eigen and coauthors proposed the quasispecies model in an attempt to understand such an evolutionary process. Their work has impacted antiviral treatment and vaccine design strategies. Yet, predictions of the quasispecies model are at best viewed as a guideline, primarily because it assumes an infinite population size, whereas realistic population sizes can be quite small. In this paper we consider a population genetics-based model aimed at understanding the evolution of such organisms with finite population sizes and present a rigorous study of the convergence and computational issues that arise therein. Our first result is structural and shows that, at any time during the evolution, as the population size tends to infinity, the distribution of genomes predicted by our model converges to that predicted by the quasispecies model. This justifies the continued use of the quasispecies model to derive guidelines for intervention. While the stationary state in the quasispecies model is readily obtained, due to the explosion of the state space in our model, exact computations are prohibitive. Our second set of results are computational in nature and address this issue. We derive conditions on the parameters of evolution under which our stochastic model mixes rapidly. Further, for a class of widely used fitness landscapes we give a fast deterministic algorithm which computes the stationary distribution of our model. These computational tools are expected to serve as a framework for the modeling of strategies for the deployment of mutagenic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a finite element formulation for the Saint-Venant torsion and bending problems for prismatic beams. The torsion problem formulation is based on the warping function, and can handle multiply-connected regions (including thin-walled structures), compound and anisotropic bars. Similarly, the bending formulation, which is based on linearized elasticity theory, can handle multiply-connected domains including thin-walled sections. The torsional rigidity and shear centers can be found as special cases of these formulations. Numerical results are presented to show the good coarse-mesh accuracy of both the formulations for both the displacement and stress fields. The stiffness matrices and load vectors (which are similar to those for a variable body force in a conventional structural mechanics problem) in both formulations involve only domain integrals, which makes them simple to implement and computationally efficient. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite laminates are prone to delamination. Implementation of delamination in the Carrera Unified Formulation frame work using nine noded quadrilateral MITC9 element is discussed in this article. MITC9 element is devoid of shear locking and membrane locking. Delaminated as well as healthy structure is analyzed for free mode vibration. The results from the present work are compared with the available experimental or/and research article or/and the three dimensional finite element simulations. The effect of different kinds and different percentages of area of delamination on the first three natural frequencies of the structure is discussed. The presence of open-mode delamination mode shape for large delaminations within the first three natural frequencies is discussed. Also, the switching of places between the second bending mode, with that of the first torsional mode frequency is discussed. Results obtained from different ordered theories are compared in the presence of delamination. Advantage of layerwise theories as compared to equivalent single layer theories for very large delaminations is stated. The effect of different kinds of delamination and their effect on the second bending and first torsional mode shape is discussed. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experiments using three point bend specimens of Mg single crystals have revealed that tensile twins of {10 (1) over bar2}-type form profusely near a notch tip and enhance the fracture toughness through large plastic dissipation. In this work, 3D finite element simulations of these experiments are carried out using a crystal plasticity framework which includes slip and twinning to gain insights on the mechanics of fracture. The predicted load-displacement curves, slip and tensile twinning activities from finite element analysis corroborate well with the experimental observations. The numerical results are used to explore the 3D nature of the crack tip stress, plastic slip and twin volume fraction distributions near the notch root. The occurrence of tensile twinning is rationalized from the variation of normal stress ahead of the notch tip. Further, deflection of the crack path at twin-twin intersections observed in the experiments is examined from an energy standpoint by modeling discrete twins close to the notch root.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new C-0 composite plate finite element based on Reddy's third order theory is used for large deformation dynamic analysis of delaminated composite plates. The inter-laminar contact is modeled with an augmented Lagrangian approach. Numerical results show that the widely used ``unconditionally stable'' beta-Newmark method presents instability problems in the transient simulation of delaminated composite plate structures with large deformation. To overcome this instability issue, an energy and momentum conserving composite implicit time integration scheme presented by Bathe and Baig is used. It is found that a proper selection of the penalty parameter is very crucial in the contact simulation. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A discussion has been provided for the comments raised by the discusser (Clausen, 2015)1] on the article recently published by the authors (Chakraborty and Kumar, 2015). The effect of exponent alpha for values of GSI approximately smaller than 30 becomes more critical. On the other hand, for greater values of GSI, the results obtained by the authors earlier remain primarily independent of alpha and can be easily used. (C) 2015 Elsevier Ltd. All rights reserved.