173 resultados para Enzyme inhibitors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antigen specific monoclonal antibodies present in crude hybridoma supernatants are normally screened by ELISA on plates coated with the relevant antigen. Screening for inhibitory monoclonals to enzymes would require the evaluation of purified antibodies or antibody containing supernatants for their inhibition of enzyme activity in a separate assay. However, screening for inhibitory antibodies against DNA transacting enzymes such as topoisomerase I (topo I) cannot be done using hybridoma supernatants due to the presence of nucleases in tissue culture media containing foetal calf serum which degrade the DNA substrates upon addition. We have developed a simple and rapid screening procedure for the identification of clones that secrete inhibitory antibodies against mycobacterial topo I using 96 well ELISA microtiter plates. The principle of the method is the selective capture of monoclonal antibodies from crude hybridoma supernatants by topo I that is tethered to the plate through the use of plate-bound polyclonal anti-topo I antibodies. This step allows the nucleases present in the medium to be washed off leaving the inhibitor bound to the tethered enzyme. The inhibitory activity of the captured antibody is assessed by performing an in situ DNA relaxation assay by the addition of supercoiled DNA substrate directly to the microtiter well followed by the analysis of the reaction products by agarose gel electrophoresis. The validity of this method was confirmed by purification of the identified inhibitory antibody and its evaluation in a DNA relaxation assay. Elimination of all enzyme-inhibitory constituents of the culture medium from the well in which the inhibitory antibody is bound to the tethered enzyme may make this method broadly applicable to enzymes such as DNA gyrases, restriction enzymes and other DNA transaction enzymes. Further, the method is simple and avoids the need of prior antibody purification for testing its inhibitory activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report data from two related assay systems (isolated enzyme assays and whole blood assays) that C-phycocyanin a biliprotein from Spirulina platensis is a selective inhibitor of cyclooxygenase-a (COX-2) with a very low IC50 COX-2/IC50 COX-1 ratio (0.04). The extent of inhibition depends on the period of preincubation of phycocyanin with COX-2, but without any effect on the period of preincubation with COX-1. The IC50 value obtained for the inhibition of COX-2 by phycocyanin is much lower (180 nM) as compared to those of celecoxib (255 nM) and rofecoxib (401 nM), the well-known selective COX-2 inhibitors. In the human whole blood assay, phycocyanin very efficiently inhibited COX-2 with an IC50 value of 80 nM. Reduced phycocyanin and phycocyanobilin, the chromophore of phycocyanin are poor inhibitors of COX-2 without COX-2 selectivity. This suggests that apoprotein in phycocyanin plays a key role in the selective inhibition of COX-2. The present study points out that the hepatoprotective, anti-inflammatory, and anti-arthritic properties of phycocyanin reported in the literature may be due, in part, to its selective COX-2 inhibitory property, although its ability to efficiently scavenge free radicals and effectively inhibit lipid peroxidation may also be involved. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been carried out on the proteinase inhibitors of grain sorghum (Sorghum bicolor (L.) Moench). One of the inhibitors has been isolated in a pure form and characterized. The proteinase inhibitor was extracted from the acetone-defatted sorghum meal and purified by selective thermal denaturation, ammonium sulfate fractionation, Sephadex gel filtration and DEAE-cellulose chromatography (DEAE-preparation II). This preparation was demonstrated to be a mixture of three inhibitor components by polyacrylamide disc gel electrophoresis. Further resolution of this mixture into Inhibitors I to III was achieved by QAE-Sephadex chromatography. Sorghum Inhibitor III was homogeneous by the criteria of disc gel electrophoresis and has been more fully characterized. A molecular weight of 25,000 was obtained for Inhibitor III by gel filtration and was in agreement with the value calculated from the amino acid composition of the inhibitor. The N-terminal amino acid residue of Inhibitor III, a single chain protein, was isoleucine. Sorghum proteinase inhibitors inhibit specifically the serine proteinases and are inactive towards the other classes of proteinases. Inhibitor III is primarily a chymotrypsin inhibitor, whereas Inhibitors I and II inhibit both trypsin and chymotrypsin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil N-glycosylase (Ung) is the most thoroughly studied of the group of uracil DNA-glycosylase (UDG) enzymes that catalyse the first step in the uracil excision-repair pathway. The overall structure of the enzyme from Mycobacterium tuberculosis is essentially the same as that of the enzyme from other sources. However, differences exist in the N- and C-terminal stretches and some catalytic loops. Comparison with appropriate structures indicate that the two-domain enzyme closes slightly when binding to DNA, while it opens slightly when binding to the proteinaceous inhibitor Ugi. The structural changes in the catalytic loops on complexation reflect the special features of their structure in the mycobacterial protein. A comparative analysis of available sequences of the enzyme from different sources indicates high conservation of amino-acid residues in the catalytic loops. The uracil-binding pocket in the structure is occupied by a citrate ion. The interactions of the citrate ion with the protein mimic those of uracil, in addition to providing insights into other possible interactions that inhibitors could be involved in.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coil AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K-m values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the iochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coil AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier studies in this laboratory had shown that the malarial parasite can synthesize heme de novo and inhibition of the pathway leads to death of the parasite. It has been proposed that the pathway for the biosynthesis of heme in Plasmodium falciparum is unique involving three different cellular compartments, namely mitochondrion, apicoplast and cytosol. Experimental evidences are now available for the functionality and localization of all the enzymes of this pathway, except protoporphyrinogen IX oxidase (PfPPO), the penultimate enzyme. In the present study. PfPPO has been cloned, expressed and shown to be localized to the mitochondrion by immunofluorescence microscopy. Interestingly, the enzyme has been found to be active only under anaerobic conditions and is dependent on electron transport chain (ETC) acceptors for its activity. The native enzyme present in the parasite is inhibited by the ETC inhibitors, atovaquone and antimycin. Atovaquone, a well known inhibitor of parasite dihydroorotate dehydrogenase, dependent on the ETC, inhibits synthesis of heme as well in P. falciparum culture. A model is proposed to explain the ETC dependence of both the pyrimidine and heme-biosynthetic pathways in P. falciparum. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of interaction of methoxyamine with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in enzyme activity, visible absorption spectra, circular dichroism and fluorescence, and by evaluating the rate constant by stopped-flow spectrophotometry. Methoxyamine can be considered as the smallest substituted aminooxy derivative of hydroxylamine. It was a reversible noncompetitive inhibitor (Ki = 25 microM) of SHMT similar to O-amino-D-serine. Like in the interaction of O-amino-D-serine and aminooxyacetic acid, the first step in the reaction was very fast. This was evident by the rapid disappearance of the enzyme-Schiff base absorbance at 425 nm with a rate constant of 1.3 x 10(3) M-1 sec-1 and CD intensity at 430 nm. Concomitantly, there was an increase in absorbance at 388 nm (intermediate I). The next step in the reaction was the unimolecular conversion (1.1 x 10(-3) sec-1) of this intermediate to the final oxime absorbing at 325 nm. The identity of the oxime was established by its characteristic fluorescence emission at 460 nm when excited at 360 nm and by high performance liquid chromatography. These results highlight the specificity in interactions of aminooxy compounds with sheep liver serine hydroxymethyltransferase and that the carboxyl group of the inhibitors enhances the rate of the initial interaction with the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer-modelling studies on the modes of binding of the three guanosine monophosphate inhibitors 2'-GMP, 3'-GMP, and 5'-GMP to ribonuclease (RNase) T1 have been carried out by energy minimization in Cartesian-coordinate space. The inhibitory power was found to decrease in the order 2'-GMP > 3'-GMP > 5'-GMP in agreement with the experimental observations. The ribose moiety was found to form hydrogen bonds with the protein in all the enzyme-inhibitor complexes, indicating that it contributes to the binding energy and does not merely act as a spacer between the base and the phosphate moieties as suggested earlier. 2'-GMP and 5'-GMP bind to RNase T1 in either of the two ribose puckered forms (with C3'-endo more favoured over the C2'-endo) and 3'-GMP binds to RNase T1 predominantly in C3'-endo form. The catalytically important residue His-92 was found to form hydrogen bond with the phosphate moiety in all the enzyme-inhibitor complexes, indicating that this residue may serve as a general acid group during catalysis. Such an interaction was not found in either X-ray or two-dimensional NMR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bowman-Birk inhibitors (BBI) isolated from plant seeds are small proteins active against trypsin and/or chymotrypsin. These inhibitors have been extensively studied in terms of their structure, interactions, function and evolution. Examination of the known three-dimensional structures of BBIs revealed similarities and subtle differences.The hydrophobic core, deduced from surface accessibility and hydrophobicity plots, corresponding to the two tandem structural domains of the double headed BBI are related by an almost exact two-fold, in contrast to the reactive site loops which depart appreciably from the two-fold symmetry. Also, the orientations of inhibitory loops in soybean and peanut inhibitors were different with respect to the rigid core. Based on the structure of Adzuki bean BBI-trypsin complex, models of trypsin and chymotryspin bound to the monomeric soybean BBI (SBI) were constructed. There were minor short contacts between the two enzymes bound to the inhibitor suggesting near independence of binding. Binding studies revealed that the inhibition of one enzyme in the presence of the other is associated with a minor negative cooperativity. In order to assess the functional significance of the reported oligomeric forms of BBI, binding of proteases to the crystallographic and non-crystallographic dimers as found in the crystal structure of peanut inhibitor were examined. It was found that all the active sites in these oligomers cannot simultaneously participate in inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of glutamine synthetase isolated from the germinated seedlings of Phaseolus aureus was regulated by feedback inhibition by alanine, glycine, histidine, AMP, and ADP. When glutamate was the varied substrate, alanine, histidine, and glycine were partial noncompetitive, competitive, and mixed-type inhibitors, respectively. The type of inhibition by these amino acids was confirmed by fractional inhibition analysis. The adenine nucleotides, AMP and ADP, completely inhibited the enzyme activity and were competitive with respect to ATP. Multiple inhibition analyses revealed the presence of separate and nonexclusive binding sites for the amino acids and mutually exclusive sites for adenine nucleotides. Cumulative inhibition was observed with these end products.