135 resultados para Electron beam induced electronic transport
Resumo:
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.
Resumo:
The earlier work on the possibility of interband electron pairing in the presence of a strong radiation field has been further extended. Some additional terms, neglected earlier, have been taken into account and generalized to a situation where the electron-phonon coupling coefficients for the two conduction bands (valleys) are different. It is found that the pairing interaction is attractive and the strength depends on the photon density.
Resumo:
We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.
Resumo:
Wear of etched near-eutectic aluminium silicon alloy slid against a steel ball under ambient is explored. The sliding velocity is kept low (0.01 m/s) and the nominal contact pressure is varied in a 15-40 MPa range. Four stages of wear are identified; ultra mild wear, mild wear, severe wear and post severe oxidative wear. The first transition is controlled by the protrusions of silicon particles, projecting out of the aluminium alloy matrix. Once these protrusions disappear under pressure and sliding, oxidation and bulk energy dissipation mechanisms take over to institute transitions to other stages of wear. The phenomenological characteristics of wear stages are explored using a variety of techniques including nanoindentation, focused ion beam milling, electron microscopy, X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and optical interferometry. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rapid solidification of an equiatomic In-Se alloy resulted in the formation of an equilibrium InSe-In6Se7 phase mixture. The InSe phase was found to be polytypic and exhibited the structural variants 2H, 3H, and 4H. The 4H polytype was found to be in considerably higher proportion compared to 2H and 3H types. The In6Se7 phase was found to be hexagonal with a=0.8919 nm and c=1.4273 nm. Both In6Se 7 and the polytypes of InSe could be identified with the space group P61. The conductivity σ variation with temperature was found to be similar to that observed in disordered semiconducting materials. For temperatures >200 K, ln σ decreased linearly with T-1, phonon-assisted carrier excitation. For temperatures <200 K, ln σ decrease followed T-1/3 behavior, representative of variable-range hopping conduction of electrons.
Resumo:
HeI photoelectron spectra of 1:1 electron donor-acceptor complexes are discussed in the light of molecular orbital calculations. The complexes discussed include those formed by BH3, BF3 and SO2. Some systematics have been found in the ionization energy shifts of the complexes compared to the free components and these are related to the strength of the donor-acceptor bond. Hel spectra of hydrogen bonded complexes are discussed in comparison with results from MO calculations. Limitations of such studies as well as scope for further investigations are indicated.
Resumo:
Energy loss spectra of superconducting YBa2Cu3O6.9' Bi1.5Pb0.5Ca2.5Sr1.5Cu3O10+δ and Tl2CaBa2Cu3O8 obtained at primary electron energies in the 170–310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.
Resumo:
An electron energy loss spectroscopic study of the formic acid dimer has shown bands centred around 7.2, 8.5, 9.8, and 11.1 eV, of which the first and the third bands are assigned to n- rc* transitions and the other two to n-n* transitions; similar transitions are found in the acetic acid dimer.
Resumo:
We present first-principles density-functional-theory-based calculations to determine the effects of the strength of on-site electron correlation, magnetic ordering, pressure and Se vacancies on phonon frequencies and electronic structure of FeSe1-x. The theoretical equilibrium structure (lattice parameters) of FeSe depends sensitively on the value of the Hubbard parameter U of on-site correlation and magnetic ordering. Our results suggest that there is a competition between different antiferromagnetic states due to comparable magnetic exchange couplings between first- and second-neighbor Fe sites. As a result, a short range order of stripe antiferromagnetic type is shown to be relevant to the normal state of FeSe at low temperature. We show that there is a strong spin-phonon coupling in FeSe (comparable to its superconducting transition temperature) as reflected in large changes in the frequencies of certain phonons with different magnetic ordering, which is used to explain the observed hardening of a Raman-active phonon at temperatures (similar to 100 K) where magnetic ordering sets in. The symmetry of the stripe antiferromagnetic phase permits an induced stress with orthorhombic symmetry, leading to orthorhombic strain as a secondary order parameter at the temperature of magnetic ordering. The presence of Se vacancies in FeSe gives rise to a large peak in the density of states near the Fermi energy, which could enhance the superconducting transition temperature within the BCS-like picture.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.