166 resultados para Electromagnetic modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two- and three-state models for the adsorption of organic compounds at the electrode/electrolyte interface are proposed. Different size requirements, if any, for the neutral molecule and the adsorbing solvent are also considered. It is shown how the empirical, generalised surface layer (GSL) relationship (between the potential difference and the electrode charge) formulated by Damaskin et al. can be understood at the molecular level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denial-of-service (DoS) attacks form a very important category of security threats that are prevalent in MIPv6 (mobile internet protocol version 6) today. Many schemes have been proposed to alleviate such threats, including one of our own [9]. However, reasoning about the correctness of such protocols is not trivial. In addition, new solutions to mitigate attacks may need to be deployed in the network on a frequent basis as and when attacks are detected, as it is practically impossible to anticipate all attacks and provide solutions in advance. This makes it necessary to validate the solutions in a timely manner before deployment in the real network. However, threshold schemes needed in group protocols make analysis complex. Model checking threshold-based group protocols that employ cryptography have not been successful so far. Here, we propose a new simulation based approach for validation using a tool called FRAMOGR that supports executable specification of group protocols that use cryptography. FRAMOGR allows one to specify attackers and track probability distributions of values or paths. We believe that infrastructure such as FRAMOGR would be required in future for validating new group based threshold protocols that may be needed for making MIPv6 more robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the radiated electric and magnetic fields above a perfectly conducting ground at different heights from 10 m to 10 km and for lateral distances varying from 20 m to 10 km from a lightning return stroke channel are computed and the field waveforms are presented. It has been observed that the vertical electric field reverses its polarity with height and this height depends on the radial distance from the lightning channel. The magnitude of the horizontal electric field, on the other hand,increases with height up to a certain height and then reduces. The effect of variation in the rate of rise of lightning current (di/dt) and the velocity of return stroke current on the radiated electric and magnetic fields for the above heights and distances have also been studied. It is seen that the variation in maximum current derivative does not have a significant influence on the electric field when ground is assumed as a perfect conductor but it influences significantly the horizontal electric field when ground has finite conductivity. The velocity of propagation of return stroke current on the other hand has significant influence for both perfectly as well as finitely conducting ground conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a model for composite beam with embedded de-lamination is developed using the wavelet based spectral finite element (WSFE) method particularly for damage detection using wave propagation analysis. The simulated responses are used as surrogate experimental results for the inverse problem of detection of damage using wavelet filtering. The WSFE technique is very similar to the fast fourier transform (FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies scaling function approximation in time. Unlike FSFE formulation with periodicity assumption, the wavelet-based method allows imposition of initial values and thus is free from wrap around problems. This helps in analysis of finite length undamped structures, where the FSFE method fails to simulate accurate response. First, numerical experiments are performed to study the effect of de-lamination on the wave propagation characteristics. The responses are simulated for different de-lamination configurations for both broad-band and narrow-band excitations. Next, simulated responses are used for damage detection using wavelet analysis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.