287 resultados para Elastic shear buckling
Resumo:
A method is presented to obtain stresses and displacements in rotating disks by taking into account the effect of out-of-plane restraint conditions at the hub. The stresses and displacements are obtained in a non-dimensional form, presented in the form of graphs and compared with the generalized plane stress solution.
Resumo:
A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.
Resumo:
For the prediction of response of footings subjected to horizontal vibration, different types of contact shear distributions and displacement conditions are to be considered. Solutions using elastic half-space theory are not available for all the cases of shear distribution and displacement conditions. In this paper, solutions are obtained for the cases in which solutions are not available and the relevant coefficients are presented in tables which could be used in the appropriate equations for the prediction of dynamic response. Spring constants are evaluated and tabulated for different displacement and shear distribution conditions.
Resumo:
The elastic constants of NaBrO3 and NaClO3 are evaluated from ultrasonic velocity measurements using pulse superposition techniques. The values of C11, C12 and C44 for NaBrO3 at 298°K are 5.578, 1.705, 1.510 (x 1010 N/m2) and for NaClO3 the values are 4.897, 1.389, 1.174. The values at 77°K are respectively 6.35, 1.98 and 1.65 for NaBrO3 and 6.15, 2.16 and 1.32 for NaClO3.
Resumo:
Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.
Resumo:
The propagation characteristics of a visco-elastic fluid in a distensible tube tube are studied. The linear visco-elastic nature of the fluid is described by a complex coefficient of viscosity η*. The equation of motion of the vessel wall takes into account the pulsatile nature of the wall. Results are presented for wave propagation velocity, the resistance and the reactance of the fluid and the wall impedance. It is seen that the visco-elastic influence is significant for high values of the frequency of oscillation in various arterial vessels.
Resumo:
Vibrational stability of a large flexible, structurally damped spacecraft subject to large rigid body rotations is analysed modelling the system as an elastic continuum. Using solution of rigid body attitude motion under torque free conditions and modal analysis, the vibrational equations are reduced to ordinary differential equations with time-varying coefficients. Stability analysis is carried out using Floquet theory and Sonin-Polya theorem. The cases of spinning and non-spinning spacecraft idealized as a flexible beam plate undergoing simple structural vibration are analysed in detail. The critical damping required for stabilization is shown to be a function of the spacecraft's inertia ratio and the level of disturbance.
Resumo:
The elastic constantsC 11,C 12 and C 44 of sodium chlorate single crystal have been evaluated using 10 MHz ultrasonic pulse echo superposition technique. The values are C 11=4.90,C 12=1.39,C 44=1.17 (× 1010 N/m 2) at 298 K and 6.15, 2.16, 1.32 (×1010 N/m 2) at 77 K. The data agree well with the values measured earlier up to 223 K. Brief mention is also made of the low temperature bonding problems in these soft crystals.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
The shear difference method which is commonly used for the separation of normal stresses using photoelastic techniques depends on the step-by-step integration of one of the differential equations of equilibrium. It is assumed that the isoclinic and the isochromatic parameters measured by the conventional methods pertain to the state of stress at the midpoint of the light path. In practice, a slice thin enough for the above assumption to be true and at the same time thick enough to give differences in the shear-stress values over the thickness is necessary. The paper discusses the errors introduced in the isoclinic and isochromatic values by the conventional methods neglecting the variation of stresses along the light path. It is shown that while the error introduced in the measurement of the isochromatic parameter may not be serious, the error caused in the isoclinic measurement may lead to serious errors. Since the shear-difference method involves step-by-step integration the error introduced will be of a cumulative nature.
Resumo:
An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.
Resumo:
The nanoindentation hardness of individual shear bands in a Zr-based metallic glass was investigated in order to obtain a better understanding of how shear band plasticity is influenced by non-crystalline defects. The results clearly showed that the shear band hardness in both as-cast and structurally relaxed samples is much lower than the respective hardness of undeformed region. Interestingly, inter-band matrix also exhibited lower hardness than undeformed region. The results are discussed in terms of the influence of structural state and the prevailing mechanism of plastic deformation.