215 resultados para Effective focal length
Resumo:
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable Of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored-by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above: series of dendrimers to probe their abilities to hold guests and reactive inthermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.
Resumo:
A new series of twin nonlinear optical (NLO) molecules, having two 4-nitrophenol chromophores that are linked via a flexible polymethylene spacer of varying length [(CH2)(n), n = 1-12], were synthesized. Powder second harmonic generation measurements of these twin samples indicated a pronounced odd-even oscillation, with the odd twins exhibiting a high SHG value while the even ones gave no measurable SH signal. This behavior reflects the crystal packing preferences in such twin NLO systems that have odd and even numbers of atoms linking them - the even ones appear to prefer a centrosymmetric packing arrangement. The orientational/disordering dynamics of these twin NLO molecules, doped in a polymer (poly(methyl methacrylate)) matrix, has also been studied using SHG in electric field poled samples. Interestingly, the maximum attainable SH signal, chi((2)), in, the poled samples also showed an odd-even oscillation; the odd ones again having a higher value of chi((2)) This unprecedented odd-even oscillation in such molecularly doped systems is rationalized as being due to the intrinsically greater ease of a parallel alignment of the two chromophores in the twins with an odd spacer than in those with an even one. Further, the temporal stability of the SHG intensity at 70 degrees C, after the removal of the applied corona, was also studied. The relaxation of all the twin chromophores followed a biexponential decay; the characteristic relaxation time (tau(2)) for the slow decay component suggests that while the twin with a single methylene unit relaxes relatively slowly, the relaxation is significantly faster in cases where n = 2 and 3. In the twins with even longer spacer segments, the relaxation again becomes slower and reaches a saturation value. The observed minimum appears to reflect the interplay of two competing factors that affect the chromophore alignment in such twin systems, namely, the electrostatic repulsion between neighboring oriented dipoles and the intrinsic flexibility of the spacer.
Resumo:
In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Control surface effectiveness is an important parameter for any aeroplane. For a hypersonic aircraft, though the power required to operate the flaps is determined by low speed flying conditions, it is imperative to know the effect of flaps at hypersonic speeds. Hence, studies have been done on this topic by aerodynamicists for over 40 years. In spite of this, only a limited data is available in the literature on this subject. This paper discusses the experimental study of the effect of sweep on the aerodynamic characteristics of thin slab delta wings with flaps at hypersonic speeds. For the purpose of this investigation, a novel special thin six-component balance, which has a thickness of 4mm and can be housed inside wings with 8mm thickness, has been designed. The wings had a sweep of 76degrees, 70degrees and 65degrees, t/c of 0.053 and flaps with 12% of wing area and 12% of wing chord. Testing were done at Mach 8.2, Re number of 2.13 x 10(6) (based on chord), from alpha = -12degrees to 12degrees and flap angle of 20degrees, 30degrees and 40degrees. Separation lengths, measured from Schlieren pictures, clearly show that there is 'no appreciable' effect of sweep on them. Also, using a simple local flow field calculation, the separation has been identified to be transitional in nature. These features of separation reflect in the force data. Because of the small separation length, the flaps (inspite of their small size) were very effective in generating additional C-N, C-M and C-l, which increased with increase in flap angle. In general, the C-N, C-M and X-CP were unaffected by sweep for symmetric flap deflection at positive incidences and asymmetric flap case, For symmetric flap case at negative incidences, only C-N was not influenced by the sweep but C-M decreased and X-CP moved upstream as the sweep is decreased, The wing with lower sweep produces higher CA and lower (L/D)(max) for both symmetric and asymmetric flaps. The rolling moment and adverse yaw increased with decrease in sweep for asymmetric flap deflection. Newtonian theory is shown to be incapable of predicting the effect of sweep on C-l, C-n and on the incremental values of C-N, C-M and C-A. In conclusion, it can be said that a small flap is generally adequate for hypersonic aeroplanes provided they operate at altitudes where transitional and turbulent separation can be expected to occur. This would make the flaps effective and thus enable ample control authority.
Resumo:
When ketoximes admixed with solid metaboric acid (formed from boric acid at 100degreesC/0.1 Torr) are heated (similar to 140degreesC/7-42 h), the corresponding amides or lactams are produced in excellent yields (62-92%) via the Beckmann reaction. Aromatic aldoximes undergo both dehydration to the nitrile as well as (non-stereospecific) rearrangement under the above conditions. The absence of solvent, and the mildness and low toxicity of boric acid, characterise the present procedure. CO. 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Synthesis of short peptides using propargyloxycarbonyl amino acid chlorides as effective coupling reagents and polymer supported tetrathiomolybdate as an efficient deblocking agent are reported.
Resumo:
In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We present a method to statically balance a general treestructured,planar revolute-joint linkage loaded with linear springs or constant forces without using auxiliary links. The balancing methods currently documented in the literature use extra links; some do not apply when there are spring loads and some are restricted to only two-link serial chains. In our method, we suitably combine any non-zero-free-length load spring with another spring to result in an effective zero-free-length spring load. If a link has a single joint (with the parent link), we give a procedure to attach extra zero-free-length springs to it so that forces and moments are balanced for the link. Another consequence of this attachment is that the constraint force of the joint on the parent link becomes equivalent to a zero-free-length spring load. Hence, conceptually,for the parent link, the joint with its child is removed and replaced with the zero-free-length spring. This feature allows recursive application of this procedure from the end-branches of the tree down to the root, satisfying force and moment balance of all the links in the process. Furthermore, this method can easily be extended to the closed-loop revolute-joint linkages, which is also illustrated in the paper.
Resumo:
Very Long Instruction Word (VLIW) architectures exploit instruction level parallelism (ILP) with the help of the compiler to achieve higher instruction throughput with minimal hardware. However, control and data dependencies between operations limit the available ILP, which not only hinders the scalability of VLIW architectures, but also result in code size expansion. Although speculation and predicated execution mitigate ILP limitations due to control dependencies to a certain extent, they increase hardware cost and exacerbate code size expansion. Simultaneous multistreaming (SMS) can significantly improve operation throughput by allowing interleaved execution of operations from multiple instruction streams. In this paper we study SMS for VLIW architectures and quantify the benefits associated with it using a case study of the MPEG-2 video decoder. We also propose the notion of virtual resources for VLIW architectures, which decouple architectural resources (resources exposed to the compiler) from the microarchitectural resources, to limit code size expansion. Our results for a VLIW architecture demonstrate that: (1) SMS delivers much higher throughput than that achieved by speculation and predicated execution, (2) the increase in performance due to the addition of speculation and predicated execution support over SMS averages around 12%. The minor increase in performance might not warrant the additional hardware complexity involved, and (3) the notion of virtual resources is very effective in reducing no-operations (NOPs) and consequently reduce code size with little or no impact on performance.
Resumo:
The idea of ubiquity and seamless connectivity in networks is gaining more importance in recent times because of the emergence of mobile devices with added capabilities like multiple interfaces and more processing abilities. The success of ubiquitous applications depends on how effectively the user is provided with seamless connectivity. In a ubiquitous application, seamless connectivity encompasses the smooth migration of a user between networks and providing him/her with context based information automatically at all times. In this work, we propose a seamless connectivity scheme in the true sense of ubiquitous networks by providing smooth migration to a user along with providing information based on his/her contexts automatically without re-registration with the foreign network. The scheme uses Ubi-SubSystems(USS) and Soft-Switches(SS) for maintaining the ubiquitous application resources and the users. The scheme has been tested by considering the ubiquitous touring system with several sets of tourist spots and users.
Resumo:
Building flexible constraint length Viterbi decoders requires us to be able to realize de Bruijn networks of various sizes on the physically provided interconnection network. This paper considers the case when the physical network is itself a de Bruijn network and presents a scalable technique for realizing any n-node de Bruijn network on an N-node de Bruijn network, where n < N. The technique ensures that the length of the longest path realized on the network is minimized and that each physical connection is utilized to send only one data item, both of which are desirable in order to reduce the hardware complexity of the network and to obtain the best possible performance.