157 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs
Resumo:
In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.
Resumo:
Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The unsteady incompressible viscous fluid flow between two parallel infinite disks which are located at a distance h(t*) at time t* has been studied. The upper disk moves towards the lower disk with velocity h'(t*). The lower disk is porous and rotates with angular velocity Omega(t*). A magnetic field B(t*) is applied perpendicular to the two disks. It has been found that the governing Navier-Stokes equations reduce to a set of ordinary differential equations if h(t*), a(t*) and B(t*) vary with time t* in a particular manner, i.e. h(t*) = H(1 - alpha t*)(1/2), Omega(t*) = Omega(0)(1 - alpha t*)(-1), B(t*) = B-0(1 - alpha t*)(-1/2). These ordinary differential equations have been solved numerically using a shooting method. For small Reynolds numbers, analytical solutions have been obtained using a regular perturbation technique. The effects of squeeze Reynolds numbers, Hartmann number and rotation of the disk on the flow pattern, normal force or load and torque have been studied in detail
Resumo:
Part I (Manjunath et al., 1994, Chem. Engng Sci. 49, 1451-1463) of this paper showed that the random particle numbers and size distributions in precipitation processes in very small drops obtained by stochastic simulation techniques deviate substantially from the predictions of conventional population balance. The foregoing problem is considered in this paper in terms of a mean field approximation obtained by applying a first-order closure to an unclosed set of mean field equations presented in Part I. The mean field approximation consists of two mutually coupled partial differential equations featuring (i) the probability distribution for residual supersaturation and (ii) the mean number density of particles for each size and supersaturation from which all average properties and fluctuations can be calculated. The mean field equations have been solved by finite difference methods for (i) crystallization and (ii) precipitation of a metal hydroxide both occurring in a single drop of specified initial supersaturation. The results for the average number of particles, average residual supersaturation, the average size distribution, and fluctuations about the average values have been compared with those obtained by stochastic simulation techniques and by population balance. This comparison shows that the mean field predictions are substantially superior to those of population balance as judged by the close proximity of results from the former to those from stochastic simulations. The agreement is excellent for broad initial supersaturations at short times but deteriorates progressively at larger times. For steep initial supersaturation distributions, predictions of the mean field theory are not satisfactory thus calling for higher-order approximations. The merit of the mean field approximation over stochastic simulation lies in its potential to reduce expensive computation times involved in simulation. More effective computational techniques could not only enhance this advantage of the mean field approximation but also make it possible to use higher-order approximations eliminating the constraints under which the stochastic dynamics of the process can be predicted accurately.
Resumo:
Vibrational stability of large flexible structurally damped spacecraft carrying internal angular momentum and undergoing large rigid body rotations is analysed modeling the systems as elastic continua. Initially, analytical solutions to the motion of rigid gyrostats under torque-free conditions are developed. The solutions to the gyrostats modeled as axisymmetric and triaxial spacecraft carrying three and two constant speed momentum wheels, respectively, with spin axes aligned with body principal axes are shown to be complicated. These represent extensions of solutions for simpler cases existing in the literature. Using these solutions and modal analysis, the vibrational equations are reduced to linear ordinary differential equations. Equations with periodically varying coefficients are analysed applying Floquet theory. Study of a few typical beam- and plate-like spacecraft configurations indicate that the introduction of a single reaction wheel into an axisymmetric satellite does not alter the stability criterion. However, introduction of constant speed rotors deteriorates vibrational stability. Effects of structural damping and vehicle inertia ratio are also studied.
Resumo:
The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.
Resumo:
Galerkin representations and integral representations are obtained for the linearized system of coupled differential equations governing steady incompressible flow of a micropolar fluid. The special case of 2-dimensional Stokes flows is then examined and further representation formulae as well as asymptotic expressions, are generated for both the microrotation and velocity vectors. With the aid of these formulae, the Stokes Paradox for micropolar fluids is established.
Resumo:
The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.
Resumo:
The method of initial functions has been applied for deriving higher order theories for cross-ply laminated composite thick rectangular plates. The equations of three-dimensional elasticity have been used. No a priori assumptions regarding the distribution of stresses or displacements are needed. Numerical solutions of the governing equations have been presented for simply supported edges and the results are compared with available ones.
Resumo:
The self-similar solution of the unsteady laminar incompressible two-dimensional and axisymmetric stagnation point boundary layers for micropolar fluids governing the flow and heat transfer problem has been obtained when the free stream velocity and the square of the mass transfer vary inversely as a linear function of time. The nonlinear ordinary differential equations governing the flow have been solved numerically using a quasilinear finite-Difference scheme. The results indicate that the coupling parameter, mass transfer and unsteadiness in the free stream velocity strongly affect the skin friction, microrotation gradient and heat transfer whereas the effect of microrotation parameter is strong only on the microrotation gradient. The heat transfer is strongly dependent on the prandtl number whereas the skin friction gradient are unaffected by it.
Resumo:
The hydromagnetic spinup or spindown of an incompressible, rotating, electrically conducting fluid over an infinite insulated disk with an applied magnetic field is studied when the impulsive motion is imparted either to the fluid or to the disk. The nonlinear partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. It is found that the spinup (or spindown) time due to impulsive motion of the disk is much shorter than the spinup (or spindown) time due to the impulsive motion of the distant fluid. The spinup (or spindown) time for the hydromagnetic case is comparatively smaller than the corresponding nonmagnetic case. Spindown is not merely a mirror reflection of spinup. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.
Resumo:
Governing equations in the form of simultaneous ordinary differential equations have been derived for natural vibration analysis of isotropic laminated beams. This formulation includes significant secondary effects such as transverse shear and rotatory inetia. Through a numerical example, the influence of these secondary effects has been studied.
Resumo:
This paper presents a simple hybrid computer technique to study the transient behaviour of queueing systems. This method is superior to stand-alone analog or digital solution because the hardware requirement is excessive for analog technique whereas computation time is appreciable in the latter case. By using a hybrid computer one can share the analog hardware thus requiring fewer integrators. The digital processor can store the values, play them back at required time instants and change the coefficients of differential equations. By speeding up the integration on the analog computer it is feasible to solve a large number of these equations very fast. Hybrid simulation is even superior to the analytic technique because in the latter case it is difficult to solve time-varying differential equations.
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.