171 resultados para D
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
This paper deals with the evaluation of the component-laminate load-carrying capacity, i.e., to calculate the loads that cause the failure of the individual layers and the component-laminate as a whole in four-bar mechanism. The component-laminate load-carrying capacity is evaluated using the Tsai-Wu-Hahn failure criterion for various layups. The reserve factor of each ply in the component-laminate is calculated by using the maximum resultant force and the maximum resultant moment occurring at different time steps at the joints of the mechanism. Here, all component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the three beam reference curves. For the thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is also overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict more quickly and accurately than would otherwise be possible. Local 3-D stress, strain and displacement fields for representative sections in the component-bars are recovered, based on the stress resultants from the 1-D global beam analysis. A numerical example is presented which illustrates the failure of each component-laminate and the mechanism as a whole.
Resumo:
In the title compound, C28H21O4P, the eight-membered heterocyclic dioxaphosphocine ring has a distorted boat conformation, with the phosphoryl O atom axial and the phenoxy group equatorial. The P=O distance is 1.451 (1) Angstrom and the average length of the three P-O bonds is 1.573 (1) Angstrom. The phenyl ring is nearly perpendicular to both naphthalene planes, making dihedral angles of 91.30 (3) and 97.65 (5)degrees with them. The angle between the two naphthalene planes is 67.73 (3)degrees. The crystal structure is stabilized by van der Waals interactions.
Resumo:
A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.
Resumo:
In the racemic title compound, [PtCl2(C23H20NO2P)-(C6H15P)].CH2Cl2, the platinum(II) ion, which has approximately square-planar coordination geometry, is coordinated to two different monophosphorus ligands in a cis arrangement along with two chloride ions. A significant shortening of the P-N bond [1.604(7) Angstrom] relative to that in phosphinoamines and their complexes was observed.
Resumo:
The transformation technique is a tool FIR designing 2-D filters, useful for the design of specially shaped filters with passband/stopband regions not centred around the origin. The authors extend this technique to design two types or filters. A notch filter has a stopband centred about a small region in the 2-D frequency plane. The authors propose an extension to the transformation technique with the windowing concept to achieve the design of notch filters. A directional filter has a passband extending fully along: a straight line pacing through the origin. The transformation technique is: further extended to yield such directional filters. Design and application examples for both these fillers are also presented.
Resumo:
Variable cross-sectional area ducts are often used for attenuation at lower frequencies (of the order of firing frequency), whereas concentric tube resonators provide attenuation at relatively higher frequencies. In this paper, analysis of one dimensional control volume approach of conical concentric tube resonators is validated experimentally. The effects of mean flow and taper are investigated. The experimental setup is specially designed to measure the pressure transfer function in the form of Level Difference or Noise Reduction across the test muffler. It is shown that there is a reasonably good agreement between the predicted values of the Noise Reduction and the measured ones for incompressible mean flow as well as stationary medium. (C) 2011 Institute of Noise Control Engineering.
Resumo:
The solution- and melt-phase photochemistry of four trans-benzylidene-d,l-piperitones (1) has been investigated under a variety of conditions. The 1 undergo trans reversible cis isomerization to establish a quasi photostationary state. Further irradiation leads to 2 via oxidative ring closure. Conspicuously absent are dimers (obtained upon irradiation of the neat crystals) and the plausible Norrish Type II photoproducts, 3. Although 1c yields 2c, no evidence for the alternative cyclization route to 2a (requiring loss of HCl) has been observed. Rationalizations for the transformations are presented. The structure of 2b has been determined unambiguously from X-ray crystallographic analysis.
Resumo:
For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.
Resumo:
While bonding between d(10) atoms and ions in molecular systems has been well studied, less attention has been paid to interactions between such seemingly closed shell species in extended inorganic solids. In this contribution, we present visualizations of the electronic structures of the delafossites ABO(2) (A = Cu, Ag, Au) with particular emphasis on the nature of d(10)-d(10) interactions in the close packed plane of the coinage metal ion. We find that on going from Cu to Ag to Au, the extent of bonding between A and A increases. However, the structures (in terms of distances) of these compounds are largely determined by the strongly ionic 13,11 0 interaction and for the larger B ions Sc, In and Y, the A atoms are sufficiently well-separated that A-A bonding is almost negligible. We also analyze some interesting differences between Ag and Au, including the larger A-O covalency of the Au. The trends in electronic structure suggest that the Ag and Au compounds are not good candidate transparent conducting oxides. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.