151 resultados para Cu-Zn-Al alloy
Resumo:
A pin-on-disc machine was used to wear Al-Si alloy pins under dry conditions. Unmodified and modified binary alloys and commercial multi-component alloys were tested. The surfaces of the worn alloys were examined by scanning electron microscopy to identify distinct topographical features to aid elucidation of the mechanisms of wear.
Resumo:
The reaction of Cu(II), Zn(II), Cd(II) and Hg(II) chlorides and bromides with imidazoline-2-thione (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (IZT) and its N-methyl derivative (NMIZT) yields complexes of stoichiometry ML3X2 and ML2X (where M=Cu(I)); copper(II) halides yield Cu(I) complexes. On the basis of infrared and 13C n.m.r.
Resumo:
K2Pb[Cu(NO2)6] and [N(CH3)4]2MX4 (M = Mn, Co, Cu or Zn and X = Cl or Br) undergo phase transitions which involve incommensurate phases. The transitions have been investigated by examining the changes in the NO2 and CH3 vibration bands in the i.r. spectra. Splitting and broadening of some of the bands across the incommensurate transitions are discussed in the context of geometrical restrictions in the incommensurate phases. The phase transitions have also been characterized using differential scanning calorimetry.
Resumo:
In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely 1, 2, 6, 10 and 20 under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plate were measured using an optical profilometer. It was observed that the coefficient of friction and formation of transfer layer during the first few cycles depend on the die surface textures under both dry and lubricated conditions. It was also observed that under lubricated condition, the coefficient of friction decreases with number of cycles for all kinds of textures. However, under dry condition, it ecreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles
Resumo:
EELS studies provide definitive evidence for the hydroxylation of oxygen-covered Cu(110) and Zn(0001) surfaces on interaction with proton donor molecules such as H2O, CH3OH, HCOOH, NH3 and (CH3)2NH. The occurrence of surface hydroxylation is unambigouusly shown by a study of the interaction of H2S and HCl with an oxygen covered Cu(110) surface.
Resumo:
Metal complexes of thiazoles have been studied in recent years[I-3] because of their biochemical importance[4,5]. However, data on metal complexes of thiazole derivatives containing another coordinating function are limited[2]. We have synthesized and examined the donor characteristics of a new ligand, 2-thioacetamide thiazole (TATZ)(I) towards chlorides and bromides of Zn(II), Cd(II), Hg(II) and Cu(I). The presence of four potential donor atoms and extensive charge delocalization should render TATZ a versatile ligand.
Resumo:
Optical microscopy has been employed to observe the slip lines in deformed Al-2% Ge alloy samples. Slip lines have been observed in the as-quenched, partially-aged, fully-aged and over-aged states. The lines tend to traverse fairly straight paths in the case of quenched and partially-aged conditions. Fully-aged samples also reveal such straight running lines when tested at low-temperatures. However, the density of the lines generally decreases as the peak-aged state is approached. These results are in agreement with the idea that thermally activated shearing of the precipitates is occurring in the alloy aged up to peak-hardness. The irregular lines for the over-aged specimens support the view that the moving dislocations by-pass the precipitates during deformation. The influence of test-temperature on the appearance of slip traces has been briefly examined.
Resumo:
We have synthesized FINEMET type amorphous Fe73.5Cu1Mo3Si13.5-xAlxB9 alloy by the single wheel melt spinning technique. The effect of Al substitution on the magnetic properties has been studied using a vibrating sample magnetometer, SQUID and Mossbauer spectroscopy. Magnetization and Curie temperature of the amorphous phase of the alloys were found to decrease with A] concentration. The results are attributed to the dilution effect of At on the magnetic moment of Fe and to the increase in Fe-Fe interaction distance resulting in the weakening of exchange interaction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The synthesis of colloids of copper and zinc nanoparticles by solvated metal atom dispersion (SMAD) is described. The as-prepared colloids with a large size distribution of the particles are transformed into colloidal nanoparticles of a narrow size distribution by the digestive ripening process which involves refluxing the colloid at or near the boiling point of the solvent in the presence of a passivating ligand. The copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.9 ± 0.3 nm diameters have thus been obtained. Digestive ripening of the as-prepared copper and zinc colloids together in the presence of a passivating agent gave Cu@ZnO core−shell nanoparticles, with an average diameter of 3.0 ± 0.7 nm. Particles synthesized in this manner were characterized by UV−visible spectroscopy, high-resolution electron microscopy, energy-filtered electron microscopy, and powder X-ray diffraction methods which confirm the core−shell structure.
Resumo:
The slow reaction in an Al-5 wt.% Ag alloy has been investigated by resistivity measurements. The "slope change" method gave an activation energy of 1.25 eV for silver diffusion during the slow reaction. The existence of an excess concentration of vacancies in equilibrium with the dislocation loops seems to be responsible for the slow reaction. The presence of silver inhibits the nucleation of dislocation loops by holding up the quenched-in vacancies in solution. There is no indication of the presence of a third stage in the low-temperature ageing process of this alloy.
Resumo:
The three-phase equilibrium between alloy, spinel solid solution and alpha -Al sub 2 O sub 3 in the Fe--Co--Al--O system at 1873k was fully characterized as a function of alloy composition using both experimental and computational methods. The equilibrium oxygen content of the liquid alloy was measured by suction sampling and inert gas fusion analysis. The O potential corresponding to the three-phase equilibrium was determined by emf measurements on a solid state galvanic cell incorporating (Y sub 2 O sub 3 )ThO sub 2 as the solid electrolyte and Cr + Cr sub 2 O sub 3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface between the alloy and alumina crucible was measured by electron probe microanalysis (EPMA). The experimental results were compared with the values computed using a thermodynamic model. The model used values for standard Gibbs energies of formation of pure end-member spinels and Gibbs energies of solution of gaseous O in liquid Fe and cobalt available in the literature. The activity--composition relationship in the spinel solid solution was computed using a cation distribution model. The variation of the activity coefficient of O with alloy composition in the Fe--Co--O system was estimated using both the quasichemical model of Jacob and Alcock and Wagner's model along with the correlations of Chiang and Chang and Kuo and Chang. The computed results of spinel composition and O potential are in excellent agreement with the experimental data. Graphs. 29 ref.--AA
Resumo:
The three phase equilibrium between alloy, spinel solid solution and α-alumina in the Fe-Ni-Al-O system has been fully characterized at 1823K as a function of alloy composition using both experimental and computational methods. The oxygen potential was measured using a solid state cell incorporating yttria-doped thoria as the electrolyte and Cr+ Cr2O3 as the reference electrode. Oxygen concentration of the alloy was determined by an inert gas fusion technique. The composition of the spinel solid solution, formed at the interface between the alloy and an alumina crucible, was determined by EPMA. The variation of the oxygen concentration and potential and composition of the spinel solid solution with mole fraction of nickel in the alloy have been computed using activities in binary Fe-Ni system, free energies of formation of end member spinels FeO•(1+x)Al2O3 and NiO•(1+x)Al2O3 and free energies of solution of oxygen in liquid iron and nickel, available in the literature. Activities in the spinel solid solution were computed using a cation distribution model. The variation of the activity coefficient of oxygen with alloy composition in Fe-Ni-O system was calculated using both the quasichemical model of Jacob and Alcock and the Wagner's model, with the correlation of Chiang and Chang. The computed results for the oxygen potential and the composition of the spinel solid solution are in good agreement with the measurements. The measured oxygen concentration lies between the values computed using models of Wagner and Jacob and Alcock. The results of the study indicate that the deoxidation hyper-surface in multicomponent systems can be computed with useful accuracy using data for end member systems and thermodynamic models.