140 resultados para Crystal Growth
Resumo:
The topological and the electrostatic properties of the aspirin drug molecule were determined from high-resolution X-ray diffraction data at 90 K, and the corresponding results are compared with the theoretical calculations. The electron density at the bond critical point of all chemical bonds induding the intermolecular interactions of aspirin has been quantitatively described using Bader's quantum theory of ``Atoms in Molecules''. The electrostatic potential of the molecule emphasizes the preferable binding sites of the drug and the interaction features of the molecule, which are crucial for drug-receptor recognition. The topological analysis of hydrogen bonds reveals the strength of intermolecular interactions.
Resumo:
The terms phase transformation, polymorphism, disorder, isosterism, and isostructuralism are often the keywords used in the design and engineering of molecular crystals. Three benzoylcarvacryl thiourea derivatives with -NH-C(S)-NH-C(O)-] cores generate molecular crystals, which provide the basis for exploring a common link between the structures related by aforementioned terms. The apparent ``origin'' of all these structural modifications has been traced to the formation of a planar molecular dimeric chain built with homomeric R-2(2)(12) and R-2(2)(8) synthons occurring in tandem, one formed with N-H center dot center dot center dot O and the other with N-H center dot center dot center dot S hydrogen bonds.
Resumo:
We present an extensive study on the structural, electrical and optical properties of InN thin films grown on c-Al2O3, GaN(130 nm)/Al2O3, GaN(200 nm)/Al2O3 and GaN(4 mu m)/Al2O3 by using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals better crystalline quality for the film grown on GaN(4 mu m)/Al2O3 as compared to others. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Kane's k.p model was used to describe the dependence of optical absorption edge of InN films on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Room temperature Raman spectra for the InN films grown on GaN show the signature of residual tensile stress in contrast to the compressive stress observed for the films grown directly on c-Al2O3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.
Resumo:
Single crystals of lithium D-isoascorbate monohydrate (LDAM), (C6H7O6Li center dot H2O), are grown by a solution growth method. The crystal structure of LDAM is solved using single crystal X-ray diffraction. The space group is orthorhombic P2(1)2(1)2(1) with four formula units per unit cell and lattice parameters a = 7.7836(3) angstrom, b = 8.7456(3) angstrom, and c = 11.0368(4) angstrom. Solubility of the material in water is determined thermogravimetrically and found to have a positive temperature coefficient of solubility. Large optical quality single crystals are subsequently grown from aqueous solution by a slow cooling method. The crystal has a bulky prismatic habit and among the prominent faces the c face appears as the only principal morphological face. The crystal exhibits a (010) cleavage. Dielectric spectroscopy reveals a nearly Debye type Cole-Cole behavior with anisotropy in relaxation. Optical transmission range is found to be from 300 to 1400 nm. The principal refractive indices of this biaxial crystal, measured using Brewster's angle method, at wavelengths 405, 543, and 632.8 nm, show high dispersion. The crystal is negative biaxial with 2V(z) = 107.8 degrees (405 nm) and belongs to the Hobden class 3. Theoretically generated type 1 and type 2 second order phase matching curves match very well with the experimental results. The second-order nonlinear coefficient d(14) was determined to be 7 x 10(-13) m/V. For the optimum phase matching direction (type 2), the second-order effective nonlinear coefficient and the walk off angle are determined to be 0.84 times d(14) and 3.5 degrees respectively. The crystal possesses high multiple surface damage thresholds of 18 GW/cm(2) and 8 GW/cm(2) at laser wavelengths 1064 and 532 nm, respectively.
Resumo:
Sequential transformation in a family of metal-organic framework compounds has been investigated employing both a solid-state as well as a solution mediated route. The compounds, cobalt oxy-bis(benzoate) and manganese oxybis(benzoate) having a two-dimensional structure, were reacted with bipyridine forming cobalt oxy-bis(benzoate)-4,4'-bipyridine and manganese oxy-bis(benzoate)-4,4'-bipyridine, respectively. The bipyridine containing compounds appear to form sequentially through stable intermediates. For the cobalt system, the transformation from a two-dimensional compound, Co(H2O)(2)(OBA)] (OBA = 4,4'-oxy-bis(benzoate)), I, to two different three-dimensional compounds, Co(bpy)(OBA)]center dot bpy, II, (bpy = 4,4'-bipyridine) and Co(bpy)(0.5)(OBA)], III, and reversibility between II and III have been investigated. In the manganese system, transformation from a two-dimensional compound, Mn(H2O)(2)(OBA)], Ia, to two different three-dimensional compounds, Mn (bpy)(OBA)]center dot bpy, Ha and Ha to Mn(bpy)(0.5)(OBA)], Ilia, has been investigated. It has also been possible to identify intermediate products during these transformation reactions. The possible pathways for the formation of the compounds were postulated.
Resumo:
The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.
Resumo:
A family of 4-hydroxybenzamide-dicarboxylic acid cocrystals has been designed and subsequently isolated and characterized. The design strategy follows from an understanding of synthon modularity in crystal structures of monocomponent crystals such as gamma-quinol, 4,4'-biphenol and 4-hydroxybenzoic acid. These monocomponent structures contain infinite O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot cooperative synthons linked with molecular connectors such as phenyl and biphenyl, and supramolecular connectors such as the acid dimer in 4-hydroxybenzoic acid. The cocrystal design was influenced by the anticipation that dicarboxylic acids can form a supramolecular connector mediated by acid-amide synthons with 4-hydroxybenzamide, which can then form the phenol O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot infinite synthon. Effectively, the acid-amide and phenol synthons are insulated. The short axis of such a structure will be around 5.12 angstrom and this is borne out in 2:1 cocrystals of 4-hydroxybenzamide with oxalic, succinic, fumaric, glutaric (two forms) and pimelic acids. Hydrated variations of this structure type are seen in the cocrystals obtained with adipic and sebacic acids.
Resumo:
Herein, we report the design and synthesis of 2,2'-bithiazole derivatives with efficient intermolecular halogen interactions. The single crystal X-ray diffraction studies revealed unique type-II halogen interactions in these derivatives. The shortest type-II F center dot center dot center dot F interactions within the distance of 2.67 angstrom, at an angle of 89.1 degrees and 174.2 degrees, was observed for the first time. The Gaussian calculations were performed to further establish predominant F center dot center dot center dot F interactions.
Resumo:
Three new compounds of bismuth, C4N2H10]center dotBi(C7H4NO4)(C7H3NO4)]center dot H2O, I, Bi(C5H3N2O4) (C5H2N2O4)], II, and Bi(mu(2)-OH)(C7H3NO4)], III, have been prepared by the reaction between bismuth nitrate and heterocyclic aromatic dicarboxylic acids, 2,6-pyridinedicarboxylic acid, 4,5-imidazoledicarboxylic acid, and 3,4-pyridinedicarboxylic acid, respectively, under hydrothermal conditions. The structures of all the compounds have linkages between Bi2O2 and the corresponding dicarboxylate forming a simple molecular unit in I, a bilayer arrangement in II, and a three-dimensional extended structure in III. The topological arrangement of the nodal building units in the structures indicates that a brucite-related layer (II) and fluorite-related arrangement (III) can be realized in these structures. By utilizing the secondary interactions, one can correlate the structure of III to a Kagome-related one. The observation of such classical inorganic related structures in the bismuth carboxylates is noteworthy. Lewis acid catalytic studies on the formation of ketal suggest the possible participatory role of the lone pair of electrons. All the compounds are characterized employing elemental analysis, IR, UV-vis, and thermal studies.
Resumo:
Novel composite cyclodextrin (CD)-CaCO3 spherical porous microparticles have been synthesized through Ca2+-CD complex formation, which influences the crystal growth of CaCO3. The CDs are entrapped and distributed uniformly in the matrix of CaCO3 microparticles during crystallization. The hydrophobic fluorescent molecules coumarin and Nile red (NR) are efficiently encapsulated into these composite CD-CaCO3 porous particles through supramolecular inclusion complexation between entrapped CDs and hydrophobic molecules. Thermogravimetric (TGA) and infrared spectroscopy (IR) analysis of composite CD-CaCO3 particles reveals the presence of large CDs and their strong interaction with calcium carbonate nanoparticles. The resulting composite CD-CaCO3 microparticles are utilized as sacrificial templates for preparation of CD-modified layer-by-layer (LbL) capsules. After dissolution of the carbonate core, CDs are retained in the interior of the capsules in a network fashion and assist in the encapsulation of hydrophobic molecules. The efficient encapsulation of the hydrophobic fluorescent dye, coumarin, was successfully demonstrated using CD-modified capsules. In vitro release of the encapsulated coumarin from the CD-CaCO3 and CD-modified capsules has been demonstrated.
Resumo:
Thirteen new solid forms of etravirine were realized in the process of polymorph and cocrystal/salt screening to improve the solubility of this anti-HIV drug. One anhydrous form, five salts (hydrochloride, mesylate, sulfate, besylate, and tosylate), two cocrystals (with adipic acid and 1,3,5-benzenetricarboxylic acid), and five solvates (formic acid, acetic acid, acetonitrile, and 2:1 and 1:1 methanolates) were obtained. The conformational flexibility of etravirine suggests that it can adopt four different conformations, and among these, two are sterically favorable. However, in all 13 solid forms, the active pharmaceutical ingredient (API) was found to adopt just one conformation. Due to the poor aqueous solubility of the API, the solubilities of the salts and cocrystals were measured in a 50% ethanol water mixture at neutral pH. Compared to the salts, the cocrystals were found to be stable and showed an improvement in solubility with time. All the salts were dissociated within an hour, except the tosylate, which showed 50% phase transformation after 1 h of the slurry experiment. A structure property relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
A Cambridge Structural Database (CSD) analysis on halogen center dot center dot center dot halogen contacts (X...X) in organic crystals has been carried out to review the classification criteria for type I, type II, and quasi type I/II halogen interactions. Trends observed in previous CSD analyses of the phenomenon are reinforced in the present study. The manner in which these interactions are manifested in cocrystals of 4-bromobenzamide and dicarboxylic acid is examined. The design strategy for these cocrystals uses synthon theory and follows from an understanding of the crystal structures of gamma-hydroquinone and a previously studied set of 4-hydroxybenzamide dicarboxylic acid cocrystals, making use of Br/OH isostructurality. All cocrystals are obtained by clean insertion of dicarboxylic acids between 4-bromobenzamide molecules. The strategy is deliberate and the prediction of synthons done well in advance, as evidenced from the robustness of the acid-amide heterosynthons in all nine crystal structures, with no aberrant structures in the crystallization experiments. Formation of the acid-amide synthon in these cocrystals is identified with IR spectroscopy. The packing in these cocrystals can be distinguished in terms of whether the Br...Br interactions are type I or II. Eight sets of dimorphs were retrieved from the CSD, wherein the basis of the polymorphism is that one crystal has a type I Br...Br interaction, while the other has a type II interaction.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).