139 resultados para Cross-layer optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution is presented for the laminar swirling flow in a tube. Attention is given to a particular type of swirling flow corresponding to a zero longitudinal acceleration parameter, with large suction at the surface. The investigation shows that in the case of very large rates of suction the velocity overshoot can be almost eliminated. This is even possible in flows with swirls which are characterized by a velocity overshoot in the longitudinal direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the growth of artificially generated turbulent spots and intermittency distribution in the transition region on a circular cylinder in axial flow show that the instability Reynolds number of 11,000 has a marked effect on the properties. In particular, it is found that the spot production in the initial region when a single turbulent spot has not yet wrapped around the cylinder and the propagation is essentially two-dimensional, is significantly altered. But the transition in the downstream or latter region, where most of the turbulent spots propagate onedimensionally (like the turbulent plugs in a pipe), is not affected. When the radius Reynolds number is more than 11,000, the intermittency law in the initial region is essentially the same as in twodimensional flow on a flat plate and in the latter region it is the one-dimensional flow in a pipe, the demarcation between the two regions being quite sharp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the similarity solution for the steady incompressible laminar boundary layer flow of a micropolar fluid past an infinite wedge. The governing equations have been solved numerically using fourth orderRunge-Kutta-Gill method. The results indicate the extent to which the velocity and microrotation profiles, and the surface shear stress are influenced by coupling, microrotation, and pressure gradient parameters. The important role played by the standard length of the micropolar fluid in determining the structure of the boundary layer has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the reliability optimization of a spatially redundant system, subject to various constraints, by using nonlinear programming. The constrained optimization problem is converted into a sequence of unconstrained optimization problems by using a penalty function. The new problem is then solved by the conjugate gradient method. The advantages of this method are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a detailed study of the structure of turbulence in boundary layers along mildly curved convex and concave surfaces. The surface curvature studied corresponds to δ/Rw = ± 0·01, δ being the boundary-layer thickness and Rw the radius of curvature of the wall, taken as positive for convex and negative for concave curvature. Measurements of turbulent energy balance, autocorrelations, auto- and cross-power spectra, amplitude probability distributions and conditional correlations are reported. It is observed that even mild curvature has very strong effects on the various aspects of the turbulent structure. For example, convex curvature suppresses the diffusion of turbulent energy away from the wall, reduces drastically the integral time scales and shifts the spectral distributions of turbulent energy and Reynolds shear stress towards high wavenumbers. Exactly opposite effects, though generally of a smaller magnitude, are produced by concave wall curvature. It is also found that curvature of either sign affects the v fluctuations more strongly than the u fluctuations and that curvature effects are more significant in the outer region of the boundary layer than in the region close to the wall. The data on the conditional correlations are used to study, in detail, the mechanism of turbulent transport in curved boundary layers. (Published Online April 12 2006)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO2-N2-H2O and CO2-N2-He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution of the steady laminar incompressible nonsimilar boundary-layer problem for micropolar fluids over two-dimensional and axisymmetric bodies has been presented. The partial differential equations governing the flow have been transformed into new co-ordinates having finite range. The resulting equations have been solved numerically using implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The results indicate that the separation in micropolar fluids occurs at earlier streamwise locations as compared to Newtonian fluids. The skin friction and velocity profiles depend on the shape of the body and are almost insensitive to microrotation or coupling parameter, provided the coupling parameter is small. On the other hand, the microrotation profiles and microrotation gradient depend on the microrotation parameter and they are insensitive to the coupling parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attention is given to the results of optimization studies with a 16-micron CO2-N2-H2 GDL employing two-dimensional wedge nozzles. The optimum value of the achievable gain reaches 12.7 percent/cm on the P(15) line for a 30:50:20 percent respective apportionment of the aforementioned gases. The corresponding optimum values for reservoir pressure and area ratio are computed as functions of reservoir temperature, and presented graphically.