110 resultados para Counter-insurgency
Resumo:
Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Spatial resolution in photoacoustic and thermoacoustic tomography is ultrasound transducer (detector) bandwidth limited. For a circular scanning geometry the axial (radial) resolution is not affected by the detector aperture, but the tangential (lateral) resolution is highly dependent on the aperture size, and it is also spatially varying (depending on the location relative to the scanning center). Several approaches have been reported to counter this problem by physically attaching a negative acoustic lens in front of the nonfocused transducer or by using virtual point detectors. Here, we have implemented a modified delay-and-sum reconstruction method, which takes into account the large aperture of the detector, leading to more than fivefold improvement in the tangential resolution in photoacoustic (and thermoacoustic) tomography. Three different types of numerical phantoms were used to validate our reconstruction method. It is also shown that we were able to preserve the shape of the reconstructed objects with the modified algorithm. (C) 2014 Optical Society of America
Resumo:
Gray water treatment and reuse is an immediate option to counter the upcoming water shortages in various parts of world, especially urban areas. Anaerobic treatment of gray water in houses is an alternative low cost, low energy and low sludge generating option that can meet this challenge. Typical problems of fluctuating VFA, low pH and sludge washout at low loading rates with gray water feedstock was overcome in two chambered anaerobic biofilm reactors using natural fibers as the biofilm support. The long term performance of using natural fiber based biofilms at moderate and low organic loading rates (OLR) have been examined. Biofilms raised on natural fibers (coir, ridge-gourd) were similar to that of synthetic media (PVC, polyethylene) at lower OLR when operated in pulse fed mode without effluent recirculation and achieved 80-90% COD removal at HRT of 2 d showing a small variability during start-up. Confocal microscopy of the biofilms on natural fibers indicated thinner biofilms, dense cell architecture and low extra cellular polymeric substances (EPS) compared to synthetic supports and this is believed to be key factor in high performance at low OLR and low strength gray water. Natural fibers are thus shown to be an effective biofilm support that withstand fluctuating characteristic of domestic gray water. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
Detection of pathogens from infected biological samples through conventional process involves cell lysis and purification. The main objective of this work is to minimize the time and sample loss, as well as to increase the efficiency of detection of biomolecules. Electrical lysis of medical sample is performed in a closed microfluidic channel in a single integrated platform where the downstream analysis of the sample is possible. The device functions involve, in a sequence, flow of lysate from lysis chamber passed through a thermal denaturation counter where dsDNA is denatured to ssDNA, which is controlled by heater unit. A functionalized binding chamber of ssDNA is prepared by using ZnO nanorods as the matrix and functionalized with bifunctional carboxylic acid, 16-(2-pyridyldithiol) hexadecanoic acid (PDHA) which is further attached to a linker molecule 1-ethyl-3-(3-dimethylaminopropyl) (EDC). Linker moeity is then covalently bound to photoreactive protoporphyrin (PPP) molecule. The photolabile molecule protoporphyrin interacts with -NH2 labeled single stranded DNA (ssDNA) which thus acts as a probe to detect complimentary ssDNA from target organisms. Thereafter the bound DNA with protoporphyrin is exposed to an LED of particular wavelength for a definite period of time and DNA was eluted and analyzed. UV/Vis spectroscopic analysis at 260/280 nm wavelength confirms the purity and peak at 260 nm is reconfirmed for the elution of target DNA. Quantitative and qualitative data obtained from the current experiments show highly selective detection of biomolecule such as DNA which have large number of future applications in Point-of-Care devices.
Resumo:
This paper explains the reason behind pull-in time being more than pull-up time of many Radio Frequency Micro-Electro-Mechanical Systems (RF MEMS) switches at actuation voltages comparable to the pull-in voltage. Analytical expressions for pull-in and pull-up time are also presented. Experimental data as well as finite element simulations of electrostatically actuated beams used in RF-MEMS switches show that the pull-in time is generally more than the pull-up time. Pull-in time being more than pull-up time is somewhat counter-intuitive because there is a much larger electrostatic force during pull-in than the restoring mechanical force during the release. We investigated this issue analytically and numerically using a 1D model for various applied voltages and attribute this to energetics, the rate at which the forces change with time, and softening of the overall effective stiffness of the electromechanical system. 3D finite element analysis is also done to support the 1D model-based analyses.
Resumo:
The objective of the present work is to understand the vertical electric field stimulation of the bacterial cells, when grown on amorphous carbon substrates in vitro. In particular, the antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are studied using MTTassay, live/dead assay and inner membrane permeabilization assays. In our experiments, the carbon substrate acts as one electrode and the counter electrode is positioned outside the culture medium, thus suppressing the current, electrokinetic motions and chemical reactions. Guided by similar experiments conducted in our group on neuroblastoma cells, the present experimental results further establish the interdependence of field strength and exposure duration towards bacterial growth inactivation in vitro. Importantly, significant reduction in bacterial viability was recorded at the 2.5 V/cm electric field stimulation conditions, which does not reduce the neural cell viability to any significant extent on an identical substrate. Following electrical stimulation, the bacterial growth is significantly inhibited for S. aureus bacterial strain in an exposure time dependent manner. In summary, our experiments establish the effectiveness of the vertical electric field towards bacterial growth inactivation on amorphous carbon substrates, which is a cell type dependent phenomenon (Gram-positive vs. Gram-negative). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
SnS quantum dot solar cell is fabricated by Successive Ionic Layer Adsorption and Reaction (SILAR) method. SnS layer is optimized by different SILAR cycles of deposition. The particle size increased with the increase in number of SILAR cycles. Cu2S coated FTO is used as counter electrode against the conventional Platinum electrode. On comparison with a cell having a counter electrodeelectrolyte combination of Platinum-Iodine, Cu2S-polysulfide combination is found to improve both the short circuit current and fill factor of the solar cell. A maximum efficiency of 0.54% is obtained with an open circuit voltage of 311 mV and short circuit current density of 4.86 mA/cm. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.
Resumo:
We propose two-photon excitation-based light-sheet technique for nano-lithography. The system consists of 2 -configured cylindrical lens system with a common geometrical focus. Upon superposition, the phase-matched counter-propagating light-sheets result in the generation of identical and equi spaced nano-bump pattern. Study shows a feature size of as small as few tens of nanometers with a inter-bump distance of few hundred nanometers. This technique overcomes some of the limitations of existing nano-lithography techniques, thereby, may pave the way for mass-production of nano-structures. Potential applications can also be found in optical microscopy, plasmonics, and nano-electronics. Microsc. Res. Tech. 78:1-7, 2015. (c) 2014 Wiley Periodicals, Inc.
Resumo:
The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.
Resumo:
A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths (200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients (1000, 2000 and 2500 W/(m(2).K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m(2).K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.
Resumo:
We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2 pi cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12: 2mm(3) with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy. (C) 2015 AIP Publishing LLC.
Resumo:
In this paper, based on the principles of gauge/gravity duality and considering the so called hydrodynamic limit we compute various charge transport properties for a class of strongly coupled non-relativistic CFTs corresponding to z=2 fixed point whose dual gravitational counter part could be realized as the consistent truncation of certain non-relativistic Dp branes in the non-extremal limit. From our analysis we note that unlike the case for the AdS black branes, the charge diffusion constant in the non-relativistic background scales differently with the temperature. This shows a possible violation of the universal bound on the charge conductivity to susceptibility ratio in the context of non-relativistic holography. (C) 2015 The Author. Published by Elsevier B.V.
Resumo:
X-ray polarimeters based on Time Projection Chamber (TPC) geometry are currently being studied and developed to make sensitive measurement of polarization in 2-10keV energy range. TPC soft X-ray polarimeters exploit the fact that emission direction of the photoelectron ejected via photoelectric effect in a gas proportional counter carries the information of the polarization of the incident X-ray photon. Operating parameters such as pressure, drift field and drift-gap affect the performance of a TPC polarimeter. Simulations presented here showcase the effect of these operating parameters on the modulation factor of the TPC polarimeter. Models of Garfield are used to study photoelectron interaction in gas and drift of electron cloud towards Gas Electron Multiplier (GEM). The emission direction is reconstructed from the image and modulation factor is computed. Our study has shown that Ne/DME (50/50) at lower pressure and drift field can be used for a TPC polarimeter with modulation factor of 50-65%.
Resumo:
A series of mononuclear five-coordinate cobalt(II) complexes, Co(dbdmp)(X)]Y, where dbdmp=N,N-diethyl-N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1, 2-diamine, X=N-3(-)/NCO-/NCS- and Y=PF6-/BF4-/ClO4-, have been synthesized and characterized by microanalyses and spectroscopic techniques. Crystal structures of Co(N-3)(dbdmp)]PF6 (1), Co(N-3)(dbdmp)]ClO4 (3), Co(NCO)(dbdmp)]PF6 (4), Co(NCO)(dbdmp)]ClO4 (6), and Co(NCS)(dbdmp)]ClO4 (9) have been solved by single-crystal X-ray diffraction studies and showed that all the complexes have distorted trigonal bipyramidal geometry; PF6- counter anion containing complexes Co(N-3)(dbdmp)]PF6 and Co(NCO)(dbdmp)]PF6 have chiral space groups. The binding ability of synthesized complexes with CT-DNA and bovine serum albumin (BSA) has been studied by spectroscopic methods and viscosity measurements. The experimental results of absorption titration of cobalt(II) complexes with CT-DNA indicate that the complexes have ability to form adducts and they can stabilize the DNA helix. The cobalt(II) complexes exhibit good binding propensity to BSA protein.