226 resultados para Compact


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study for transient temperature response and pressure drop in a randomly packed bed at high Reynolds numbers is presented.The packed bed is used as a compact heat exchanger along with a solid-propellant gas generator, to generate room-temperature gases for use in control actuation, air bottle pressurization, etc. Packed beds of lengths 200 and 300 mm were characterized for packing-sphere-based Reynolds numbers ranging from 0.8 x 10(4) to 8.5 x 10(4).The solid packing used in the bed consisted of phi 9.5 mm steel spheres. The bed-to-particle diameter ratio was with the average packed-bed porosity around 0.43. The inlet flow temperature was unsteady and a mesh of spheres was used at either end to eliminate flow entrance and exit effects. Gas temperature and pressure were measured at the entry, exit,and at three axial locations along centerline in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. A correlation based on the ratio of pressure drop and inlet-flow momentum (Euler number) exhibited an asymptotically decreasing trend with increasing Reynolds number. Axial conduction across the packed bed was found to he negligible in the investigated Reynolds number range. The enthalpy absorption rate to solid packing from hot gases is plotted as a function of a nondimensional time constant for different Reynolds numbers. A longer packed bed had high enthalpy absorption rate at Reynolds number similar to 10(4), which decreased at Reynolds number similar to 10(5). The enthalpy absorption plots can be used for estimating enthalpy drop across packed bed with different material, but for a geometrically similar packing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H ... O hydrogen bond between Ala(4) (CH)-H-alpha and (D)Leu(9)CO. The parameters for C-H ... O interaction are Ala(4) (CH)-H-alpha .. O=C (D)Leu(9) distance 3.27 Angstrom C-alpha-H .. O angle 176 degrees, and O .. H-alpha distance 2.29 Angstrom. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coulomb interaction strengths (Udd and Uff) have been calculated from Hartree-Fock-Slater atomic calculations for 3d transition and 5f actinide elements, respectively. By decomposing the different contributions to the response (screening) to the 3d charge fluctuation, we show that a substantial reduction in Udd arises due to the relaxation of the 3d charge distribution itself. This, combined with the screening due to the response of the 4s charge density, is shown to provide a very compact screening charge comparable to the metallic case, explaining the success of the atomic calculations for estimating U even in the metals. A pronounced dependence of Udd (or Uff) on the number of electrons nd (nf) or the electronic configuration is also shown here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local heating is an important parameter in compaction of thermally sensitive solids since local hot spots could conceivably raise the temperature of the system by several hundred degrees. To understand the importance of local hot spots, 20 g of ammonium perchlorate (AP) and potassium perchlorate (KP) were pressed together at 1500 kg cm−2 for 5 min. The surface structural examination of the compact revealed a secondary phase at the interfaces between the grains in the compositions ranging from 50% AP-50% KP to 10% AP-90% KP. The observation of the secondary phase only at the interfaces has been attributed to the short life times of temperature pulses present during the compaction. An interesting aspect of the investigation is the formation of a series of solid solutions of AP-KP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models. (C) 2010 Acoustical Society of America. DOI: 10.1121/1.3463801]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a general method for the synthesis of functional nanoporous structures by heat treating a loose compact of nanorods. Partial sintering of such a compact leads to spherodization of the nanorods and their fusion at the contact regions leading to an interconnected porous microstructure. The pore diameter can be controlled by changing the original nanorod diameter. We illustrate the generality of the method using TiO2, ZnO and hydroxyapatite as model systems; the method is applicable for any material that can be grown in the form of nanorods. The kinetics of the sintering process can be significantly enhanced in systems in which additional driving forces for mass transport arise from phase transitions proving an ultrafast pathway for producing biphasic porous structures. The possibility of producing hierarchical porous structures using fugitive sintering aids makes this process ideal for a variety of applications including catalysis, photoanodes for solar cells and scaffolds for biomedical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a compact model for small signal non quasi static analysis of long channel symmetric double gate MOSFET The model is based on the EKV formalism and is valid in all regions of operation and thus suitable for RF circuit design Proposed model is verified with professional numerical device simulator and excellent agreement is found well beyond the cut-off frequency

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations