138 resultados para Coal combustion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid-base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid-base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to brine about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two models for large eddy simulation of turbulent reacting flow in homogeneous turbulence were studied. The sub-grid stress arising out of non-linearities of the Navier-Stokes equations were modeled using an explicit filtering approach. A filtered mass density function (FMDF) approach was used for closure of the sub-grid scalar fluctuations. A posteriori calculations, when compared with the results from the direct numerical simulation, indicate that the explicit filtering is adequate in representing the effect of sub-grid stress on the filtered velocity field in the absence of reaction. Discrepancies arise when reactions occur, but the FMDF approach suffices to account for sub-grid scale fluctuations of the reacting scalars, accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is concerned with a study of an unusual effect due to density of biomass pellets in modern stoves based on close-coupled gasification-combustion process. The two processes, namely, flaming with volatiles and glowing of the char show different effects. The mass flux of the fuel bears a constant ratio with the air flow rate of gasification during the flaming process and is independent of particle density; char glowing process shows a distinct effect of density. The bed temperatures also have similar features: during flaming, they are identical, but distinct in the char burn (gasification) regime. For the cases, wood char and pellet char, the densities are 350, 990 kg/m(3), and the burn rates are 2.5 and 3.5 g/min with the bed temperatures being 1380 and 1502 K, respectively. A number of experiments on practical stoves showed wood char combustion rates of 2.5 +/- 0.5 g/min and pellet char burn rates of 3.5 +/- 0.5 g/min. In pursuit of the resolution of the differences, experimental data on single particle combustion for forced convection and ambient temperatures effects have been obtained. Single particle char combustion rate with air show a near-d(2) law and surface and core temperatures are identical for both wood and pellet char. A model based on diffusion controlled heat release-radiation-convection balance is set up. Explanation of the observed results needs to include the ash build-up over the char. This model is then used to explain observed behavior in the packed bed; the different packing densities of the biomass chars leading to different heat release rates per unit bed volume are deduced as the cause of the differences in burn rate and bed temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements on the solid electrolyte cell(Ar -b H2 ~ H2S/CaS + CaF2 ~- ( P t ) / / C a F 2 / / ( P t )-~- CaF2 ~ CaS/H2S ~- H2 ~- At) show that the emf of the cell is directly related through the Nernst equation to the difference in sulfur potentials established at the two Ar ~- H2 ~ H2S/electrode interfaces. The electrodes are designed to convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient with the aid of the reaction, CaF2(s) ~ 1~ S2(g)-e CaS(s) ~- F2(g). The response time of the probe varies from approximately 9 hr at 990~ to 2.5 hr at 1225~ The conversion of calcium sulfide and/or calcium fluoride into calcium oxide should not be a problem in anticipated commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) angstrom, c = 5.2076(2) angstrom, unit cell volume (V) = 47.66(5) (angstrom)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at similar to 375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetragonal ZrO(2), synthesized by solution combustion technique, was found to be photocatalytically active for the degradation of anionic dyes. The compound was characterized by FT-Raman spectroscopy, X-ray photoelectron spectroscopy, FT-infrared spectroscopy, UV-vis spectroscopy, BET surface area analysis, and zero point charge pH measurement. A high concentration of surface hydroxyl groups was observed over the catalyst, as confirmed by XPS and FUR. The photocatalytic degradation of orange G, amido black, remazol brilliant blue R, and alizarin cyanine green (ACG) was carried out with this material. The effect of pH, inorganic. salts, and H(2)O(2) on the activity of the catalyst was also studied, and it was found that the catalyst maintained its activity at a wide range of pH and in the presence of inorganic salts. Having established that ZrO(2) was photocatalytically active, mixed oxide catalysts of TiO(2)-ZrO(2) were also tested for the photocatalytic degradation of ACG, and the 50% ZrO(2)-TiO(2) mixed oxides showed activity that was comparable to the activity of TiO(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano ceramic alumina powders are synthesized by solution combustion synthesis using aluminium nitrate as oxidizer and urea as fuel with different fuel to oxidizer ratio. The variation of adiabatic flame temperatures are calculated theoretically for different fuel/oxidizer ratio according to thermodynamic concept and correlated with the observed flame (reaction) temperatures. A ``multi channel thermocouple setup connected to computer interfaced Keithley multi meter 2700'' is used to monitor the thermal events occurring during the process. The combustion products, characterized by XRD, show that the powders are composed of polycrystalline oxides with crystallite size of 32 to 52 nm. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various fuel to oxide ratio has been proposed for the nature of combustion and its correlation with the characteristics of as-synthesized powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and photoluminescence measurements. The structural studies indicate that the solid solution formation was limited to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under UV and solar exposure was investigated with Ti1-xMxO2±δ. The degradation rates of 4-nitrophenol with these catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powder neutron di®raction and Hi-Q neutron di®raction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cu-doped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its ¯rst coordination shell. These deductions from the data analysis ¯t well with the mechanism of catalysis we propose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon monoxide, a major pollutant from the cupola, is poisonous and flammable. It can vary from 12 to 25% in cupola emissions. Carbon monoxide content in cupola emissions can be reduced by the post-combustion air input at the appropriate level into the stack. Scientific support to this has been provided by simulation of the combustion process in the cupola. Location and the extent of input of air for post combustion into the stack have been determined.