96 resultados para Climatol-R
Resumo:
A strategy for achieving enantiodivergency from R-(-)-carvone in the context of synthesis of eudesmanes and dihydroagarofurans is disclosed, which involves, among other things, sequential setting of the C10 quaternary centre and recreation of the desired C7 isopropyl stereochemistry to enter the antipodal series. A synthesis of 1-deacetoxy-ent-orbiculin has been achieved as a demonstration of the effectiveness and applicability of this approach. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We develop a general theory of Markov chains realizable as random walks on R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via Mobius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.
Resumo:
We investigate the direct correspondence between Co band ferromagnetism and structural parameters in the pnictide oxides RCoPO for different rare-earth ions (R = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and ab initio calculations, complementing our results published previously G. Prando et al., Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr), Phys. Rev. B 87, 064401 (2013)]. We find that both the transition temperature to the ferromagnetic phase T-C and the volume of the crystallographic unit cell V are conveniently tuned by the R ionic radius and/or external pressure. We report a linear correlation between T-C and V and our ab initio calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, we show that R ions influence the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic f degrees of freedom, which are only giving a sizable magnetic contribution at much lower temperatures.
Resumo:
Modular chiral I3-organochalcogeno amines, ArYCH2CH(R)NH2 (4a-4g) where R = Me, Bz, Ph; and ArY = PhS, BzSe and 4-MeOC6H4Te respectively have been synthesized and characterized. Compounds 4a-4g were synthesized (Method II) from chiral aminoalkyl 13-methanesulfonate hydrochlorides, MsOCH2CH(R)NH3+ center dot Cl- (2a-2c) through nucleophilic displacement of MsO- with organochalcogenolate (ArY-). In another attempt (Method I) chiral beta-organotelluro amines (4a-4c) were prepared by deprotection of chiral N-boc I3-organotelluro amides, 4-MeOC6H4TeCH2CH(R)NH-Boc (3a-3c), which in turn, 13,-,1 were made from chiral N-boc 13-methanesulfonate amides (la-lc) and ArTeNa. 1H, and FTIR spectra of all the compounds (3a-3c and 4a-4g) were characteristic. The composition of 3a-3c was determined by elemental analysis. The a]TD values of 3b-3c and 4a-4g were determined. The single crystal structures of (S)-2b and (R)-2c were determined by X-Ray diffraction studies. Both (S)-2b and (R)2c were crystallized in orthorhombic system and the Flack parameter x was found 0.08(12) and 0.00(2) respectively. The crystal of (S)-2b contain two asymmetric units with gauche (A) and staggered (B) conformations. There are NH Cl-, NH-O and CH-O intra and intermolecular secondary interactions in (S)-2b and (R)-2c resulting in supramolecular structures. (C) 2015 Elsevier By. All rights reserved.
Resumo:
A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.