120 resultados para Clean Air Act


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shape dynamics of droplets exposed to an air jet at intermediate droplet Reynolds numbers is investigated. High speed imaging and hot-wire anemometry are employed to examine the mechanism of droplet oscillation. The theory that the vortex shedding behind the droplet induces oscillation is examined. In these experiments, no particular dominant frequency is found in the wake region of the droplet. Hence the inherent free-stream disturbances prove to be driving the droplet oscillations. The modes of droplet oscillation show a band of dominant frequencies near the corresponding natural frequency, further proving that there is no particular forcing frequency involved. In the frequency spectrum of the lowest mode of oscillation for glycerol at the highest Reynolds number, no response is observed below the threshold frequency corresponding to the viscous dissipation time scale. This selective suppression of lower frequencies in the case of glycerol is corroborated by scaling arguments. The influence of surface tension on the droplet oscillation is studied using ethanol as a test fluid. Since a lower surface tension reduces the natural frequency, ethanol shows lower excited frequencies. The oscillation levels of different fluids are quantified using the droplet aspect ratio and correlated in terms of Weber number and Ohnesorge number. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) are present in our every day used products such as plastics, cosmetics, air fresheners, paint, etc. The determination of amount of VOC present in atmosphere can be carried out via various sensors. In this work a nanocomposite of a novel thiophene based conducting polymer and carbon black is used as a volatile organic compound sensor. The fabricated 2 lead chemiresistor sensor was tested for vapours of toluene, acetone, cylcohexane, and carbon tetrachloride. The sensor responds to all the vapours, however, exhibit maximum response to toluene vapours. The sensor was evaluated for various concentrations of toluene. The lower limit of detection of the sensor is 15 +/- 10 ppm. The study of the effect of humidity on senor response to toluene showed that the response decreases at higher humidity conditions. The surface morphology of the nanocomposite was characterized by scanning electron microscopy. Diffuse reflectance spectroscopy was used to investigate the absorption of vapours by the nanocomposite film. Contact angle measurements were used to present the effect of water vapour on the toluene response of nanocomposite film. Solubility parameter of the conducting polymer is predicted by molecular dynamics. The sensing behaviour of the conducting polymer is correlated with solubility parameter of the polymer. Dispersion interaction of conducting polymer with toluene is believed to be the reason for the selective response towards toluene. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

`'Cassie'' state of wetting can be established by trapping air pockets on the crevices of textured hydrophobic surfaces, leading to significant drag reduction. However, this drag reduction cannot be sustained due to gradual dissolution of trapped air into water. In this paper, we explore the possibility of sustaining the underwater Cassie state of wetting in a microchannel by controlling the solubility of air in water; the solubility being changed by controlling the local absolute pressure near the surface. We show that using this method, we can in fact make the water locally supersaturated with air thus encouraging the growth of trapped air pockets on the surface. In this case, the water acts as a pumping medium, delivering air to the crevices of the hydrophobic surface in the microchannel, where the presence of air pockets is most beneficial from the drag reduction perspective. In our experiments, the air trapped on a textured surface is visualized using total internal reflection based technique, at different local absolute pressures with the pressure drop (or drag) also being simultaneously measured. We find that, by controlling the pressure and hence the solubility close to the surface, we can either shrink or grow the trapped air bubbles, uniformly over a large surface area. The experiments show that, by precisely controlling the pressure and hence the solubility we can sustain the `'Cassie state'' over extended periods of time. This method thus provides a means of getting sustained drag reduction from a textured hydrophobic surface in channel flows. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses trajectory generation problem of a fixed-wing miniature air vehicle, constrained by bounded turn rate, to follow a given sequence of waypoints. An extremal path, named as g-trajectory, that transitions between two consecutive waypoint segments (obtained by joining two waypoints in sequence) in a time-optimal fashion is obtained. This algorithm is also used to track the maximum portion of waypoint segments with the desired shortest distance between the trajectory and the associated waypoint. Subsequently, the proposed trajectory is compared with the existing transition trajectory in the literature to show better performance in several aspects. Another optimal path, named as loop trajectory, is developed for the purpose of tracking the waypoints as well as the entire waypoint segments. This paper also proposes algorithms to generate trajectories in the presence of steady wind to meet the same objective as that of no-wind case. Due to low computational burden and simplicity in the design procedure, these trajectory generation approaches are implementable in real time for miniature air vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many theories and mechanisms have been proposed to explain the phenomenon of clear-air turbulence (CAT), and some of them have been successful in predicting light, moderate and, in some cases, severe turbulence. It is only recently that skill in the forecasting of the severe form of CAT, which could lead to injuries to passengers and damage to aircraft, has improved. Recent observations and simulations suggest that some severe to extreme turbulence could be caused by horizontal vortex tubes resulting from secondary instabilities of regions of high shear in the atmosphere. We have conducted direct numerical simulations to understand the scale relationship between primary structures (larger-scale structures related to one of the causes mentioned above) and secondary structures (smaller-sized, shear structures of the size of aircraft). From shear layer simulations, we find that the ratio of sizes of primary and secondary vortices is of the right order to generate aircraft-scale vortex tubes from typical atmospheric shear layers. We have also conducted simulations with a mesoscale atmospheric model, to understand possible causes of turbulence experienced by a flight off the west coast of India. Our simulations show the occurrence of primary flow structures related to synoptic conditions around the time of the incident. The evidence presented for this mechanism also has implications for possible methods of detection and avoidance of severe CAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of gemini surfactants based on cationic imidazolium ring as polar headgroup, abbreviated as lm-n-lm], 2Br(-) (n = 2, 5, 6 and 12), was synthesized. Their ability to stabilize silver nanoparticles in aqueous media was investigated. The resulting suspensions were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). They exhibit specific morphologies by adopting different supramolecular assemblies in aqueous media depending on the internal packing arrangements and on the number of spacer methylene units -(CH2)(n)-]. Individual colloids were extracted from the aqueous to chloroform layer and spread at the air/water interface to allow the formation of well-defined Langmuir films. By analysis of the surface pressure-area isotherms, the details about the packing behavior and orientation of the imidazolium gemini surfactant capped silver nanoparticles were obtained. Morphological features of the dynamic process of monolayer compression at the air-water interface were elucidated using Brewster angle microscopy (BAM). These monolayers were further transferred on mica sheets by the Langmuir-Blodgett technique at their associated collapse pressure and the morphology of these monolayers was investigated by atomic force microscopy (AFM). The number of spacer methylene units -(CH2)(n)-] of the gemini surfactants exerted critical influence in modulating the characteristics of the resulting Langmuir films. (C) 2014 Elsevier Inc. All rights reserved.