134 resultados para Charter of Rights and Freedoms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monodisperse colloidal gold-indium (AuIn2) intermetallic nanoparticles have been synthesized from Au and In colloids using the digestive ripening process. Formation of the intermetallic proceeds via digestive ripening facilitated atomic diffusion of Au and In atoms from the Au and In nanoparticles followed simultaneously by their growth in the solution. Optimization of the reaction temperature was found to be crucial for the formation of AuIn2 intermetallic from gold and indium nanoparticles. Transmission electron microscopy revealed the presence of nearly monodisperse nanoparticles of Au and AuIn2 with particle size distribution of 3.7 +/- 1.0 nm and 5.0 +/- 1.6 nm, respectively. UV-visible spectral studies brought out the absence of SPR band in pure AuIn2 intermetallic nanoparticles. Optical study and electron microscopy, in combination with powder X-ray diffraction established phase pure AuIn2 intermetallic nanoparticles unambiguously. The potential of such an unprecedented approach has been further exploited in the synthesis of Ag3In intermetallic nanoparticles with the dimension of less than 10 nm. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysprosium oxide (Dy2O3) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using gamma-rays. A well resolved glow peak at 353 degrees C along with less intense peak at 183 degrees C was observed in GC route while, in CP a single glow peak at 364 degrees C was observed. The kinetic parameters were estimated using Chen's glow peak route. Photoluminescence (PL) of Dy2O3 shows peaks at 481, 577,666 and 756 nm which were attributed to Dy3+ transitions of F-4(9/2)-H-6(15/2), H-6(11/2), H-6(11/2) and H-6(9/2), respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED'S. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric (TE) conversion of waste heat into useful electricity demands optimized thermal and electrical transport in the leg material over a wide temperature range. In order to gain a reasonably high figure of merit (ZT) as well as high thermal electric conversion efficiency, various conditions of the starting material were studied: industrially produced skutterudite powders of p-type DDy(Fe1-xCox)(4)Sb-12 (DD: didymium) and n-type (Mm, Sm)(y)Co4Sb12 (Mm: mischmetal) were used. After a rather fast reaction-melting technique, the bulk was crushed and sieved with various strainers in order to obtain particles below the respective mesh sizes, followed by ball-milling under three different conditions. The dependence of the TE properties (after hot pressing) on the micro/nanosized particles, grains and crystallites was investigated. Optimized conditions resulted in an increase of ZT for bulk material to current record-high values: from ZT similar to 1.1 to ZT similar to 1.3 at 775 K for p-type and from ZT similar to 1.0 to ZT similar to 1.6 at 800 K for n-type, resulting in respective efficiencies (300-850 K) of eta > 13% and eta similar to 16%. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compositions with x <= 0.30 in the system (1- x)Pb(Zro(0.52)Ti(0.48))O-3-(x)BiFeO3 were synthesized by sol-gel method. Rietveld analysis of X-ray diffraction data reveals tetragonal structure (P4mm) for x <= 0.05 and monoclinic (Cm) phase along with the existence of tetragonal phase for 0.10 <= x <= 0.25 and monoclinic phase for x = 0.30. Transformation of E(2TO) and E + B1 vibrational modes in the range 210-250 cm(-1) (present for x <= 0.25) into A' + A `' modes at similar to 236 cm(-1) for x = 0.30, and occurrence of new vibrational modes A' and A `' in Raman spectra for x >= 0.10 unambiguously support the presence of monoclinic phase. Occurrence of remnant polarisation and enhanced magnetization with concentration of BiFeO3 indicates superior multiferroic properties. Variation of magneto-capacitance with applied magnetic field is a strong evidence of magneto-electric multiferroic coupling in these materials. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (tau) on silicone based hydrophobic surfaces was similar to 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of evaporation and the presence of agglomerating nanoparticles on the oscillation characteristics of pendant droplets are studied experimentally using ethanol and aqueous nanoalumina suspension, respectively. Axisymmetric oscillations induced by a round air jet are considered. Wavelet transform of the time evolution of the 2nd modal coefficient revealed that while a continuous increase in the natural frequency of the droplet occurs with time due to the diameter regression induced by vaporization in the case of ethanol droplet, no such change in resonant frequency occurs in the case of the agglomerating droplet. However, a gradual reduction in the oscillation amplitude ensues as the agglomeration becomes dominant. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronically nonadiabatic decomposition mechanisms of dimethylnitramine (DMNA) in presence of zinc metal clusters are explored. Complete active space self-consistent field (CASSCF) calculation is employed for DMNA-Zn and ONIOM (Our own N-layered integrated molecular orbital and molecular mechanics) methodology is coupled with CASSCF methodology for DMNA-Zn-10 cluster. Present computational results show that DMNA-Zn clusters undergo electronically nonadiabatic reactions, rendering nitro-nitrite isomerization followed by NO elimination. The overall reactions are also found to be highly exothermic in nature. This is the first report on electronically nonadiabatic decomposition pathways of DMNA-Zn-n neutral clusters. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature dependent acoustic phonon behavior of PbWO4 and BaWO4 using Brillouin spectroscopy has been explained for the first time. Low temperature Brillouin studies on PbWO4 and BaWO4 have been carried out from 320-20 K. In PbWO4, we observe a change in acoustic phonon mode behavior around 180 K. But in the case of BaWO4, we have observed two types of change in acoustic phonon mode behavior at 240 K and 130 K. The change in Brillouin shift omega and the slope d omega/dT are the order parameter for all kinds of phase transitions. Since we do not see hysteresis on acoustic phonon mode behavior in the reverse temperature experiments, these second order phase transitions are no related to structural phase change and could be related to acoustic phonon coupled electronic transitions. In PbWO4 he temperature driven phase transition at 180 K could be due to changes in he environment around he lead vacancy (V-pb(2-)) changes the electronic states. In the case of BaWO4, the phase transition at 240 K shows he decrease in penetration depth of WO3 impurity. So it becomes more metallic. The transition at 130 K could be he same electronic transitions as that of PbWO4 as function of temperature. The sound velocity and elastic moduli of BaWO4 shows that it could be the prominent material for acousto-optic device applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we report studies on the antioxidant activity and redox behavior of curcumin and its structurally modified synthetic analogues. We have synthesized a number of analogues of curcumin which abrogate its keto-enol tautomerism or substitute the methylene group at the centre of its heptadione moiety implicated in the hydride transfer and studied their redox property. From cyclic voltammetric studies, it is demonstrated that H-atom transfer from CH2 group at the center of the heptadione link also plays an important role in the antioxidant properties of curcumin along with that of its phenolic -OH group. In addition, we also show that the conversion of 1, 3-dicarbonyl moiety of curcumin to an isosteric heterocycle as in pyrazole curcumin, which decreases its rotational freedom, leads to an improvement of its redox properties as well as its antioxidant activity. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milling is an energy intensive process and it is considered as one of the most energy inefficient processes. Electrical and mechanical shock loading can be used to develop a pre-treatment methodology to enhance energy efficiency of comminution and liberation of minerals. Coal and Banded Hematite Jasper (BHJ) Iron ores samples were taken for the study to know the effect of shock loading. These samples were exposed to 5 electric shocks of 300 kV using an electric shock loading device. A diaphragmless shock tube was used to produce 3 and 6 compressed air shocks of Mach number 2.12 to treat the coal and Iron ore samples. Microscopic, comminution and liberation studies were carried out to compare the effectiveness of these approaches. It was found that electric shock loading can comminute the coal samples more effectively and increases the yield of carbon by 40% at 1.6 gm/cc density over the untreated coal samples. Mechanical shock loading showed improved milling performance for both the materials and 12.90% and 8.1% reduction in the D-80 of the particles was observed during grinding for treated samples of coal and iron, respectively. Liberation of minerals in BHJ Iron ore was found unaffected due to low intensity of the mechanical shock waves and non conductivity of minerals. Compressed air based shock loading is easier to operate than electrical shock loading and it needs to be explored further to improve the energy efficacy of comminution. (C) 2014 Elsevier Ltd. All rights reserved.