114 resultados para Caelestius, fl. 405-431.
Resumo:
Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib- Pro-Ala-Aib-Pro-Aib-Pro-Phe-OM(we here Boc is t-butoxycarbonyla nd Aib is a-aminoisobutyriac cid), a synthetica polar analog of the membrane-activefu ngal peptide antibioticz ervamtycinII A, crystallizesi n spaceg roupP 1 withZ =1 and cell parameters a = 9.086 ?0.002 A, b = 10.410 ?+ 0.002 A, c = 28.188 ? 0.004 A, a = 86.13 ? 0.01?, 13 = 87.90 ? 0.01?, and y = 89.27 ? 0.01?;o veralla greementf actorR = 7.3% for 7180 data (Fo > 3cr) and 0.91-A resolution. The peptide backbone makes a continuous spiral that begins as a 310-helix at the N-terminus, changes to an a-helix for two turns, and ends in a spiral of three fl-bends in a ribbon. Each of the fl-bends contains a proline residue at one of the corners. The torsion angles 4i range from -51? to -91? (average value -64o), and the torsion angles ai range from -1? to -46? (average value -31?). There are 10 intramolecularN H...OCh ydrogenb onds in the helix and two directh ead-to-taihl ydrogenb ondsb etween successive molecules. Two H20 and two CH30H solvent molecules fill additional space with appropriate hydrogen bonding in the head-to-tail region, and two additional H20 molecules form hydrogen bonds with carbonyl oxygens near the curve in the helix at Pro-10. Since there is only one peptide molecule per cell in space group P1, the molecules repeat only by translation, and consequently the helices pack parallel to each other.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
Metamizol, Na[Ct3H16N3045], C13H16N304S-Na +, a sulphonyl derivative of amidopyrine, is perhaps the most widely used non-narcotic analgetic and antiinflammatory pyrazolone derivative. The monohydrate of the compound crystallizes in the monoclinic space group P2Jc with eight molecules in a unit cell of dimensions a = 9.143 (3), b = 49.50 (2), c = 7.314 (2)/k and fl = 90.9 (1) °. The structure was solved by direct methods and refined to an R value of 0.080 for 4466 observed reflections. The two crystallographically independent molecules in the structure have similar dimensions. The elongated molecules are hydrophobic at one end and hydrophilic at the other with the middle portion partly hydrophobic and partly hydrophilic. The pyrazolone group in the structure has dimensions similar to those found in uncomplexed antipyrine and amidopyrine. The crystal structure can be described as consisting of double layers of metamizol molecules stacked perpendicular to the b axis. The adjacent double layers are separated by a layer of Naions and water molecules.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mImage aspartate or 0.5 Image KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.
Resumo:
The title compound, C t8H~sC15NaP4, crystallizes in the monoclinic space group P2~/n with a = 20.14 (2), b = 8.69 (1), c = 14.92 (2) A, fl = 98.8 (3) ° , Z = 4. The structure was determined from visual data and refined to R = 0-069 for 1450 reflections. The cyclophosphazene ring is non-planar. The exocyclic NPPh 3 group exhibits type I conformation [R. A. Shaw (1975). Pure Appl. Chem. 44, 317-341] in which the N-P bond is perpendicular to the adjacent P-CI bond.
Resumo:
CsHllNO2.C9HilNO2, Mr = 282.3, P1, a = 5.245 (1), b = 5.424 (1), c = 14.414 (2) A, a = 97.86 (1), fl = 93-69 (2), y = 70-48 (2) °, V= 356 A 3, Z = 1, O m = 1-32 (2), Dx = 1.32 g cm-3, h(Mo Ka) = 0-7107 A, g = 5-9 cm-1, F(000) = 158, T= 298 K, R=0.035 for 1518 observed reflections with I>2tr(I). The molecules aggregate in double layers, one ayer made up of L-phenylalanine molecules and the other of D-valine molecules. Each double layer is stabilized by interactions involving main-chain atoms of both types of molecules. The interactions include hydrogen bonds which give rise to two head-to-tail sequences. The arrangement of molecules in the complex is almost the same as that in the structure of DL-valine (and DL-leucine and DL-isoleucine) except for the change in the side chain of L molecules. The molecules in crystals containing an equal number of L and O hydrophobic amino-acid molecules thus appear to aggregate in a similar fashion, irrespective of the precise details of the side chain.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.
Resumo:
By using the lower bound limit analysis in conjunction with finite elements and linear programming, the bearing capacity factors due to cohesion, surcharge and unit weight, respectively, have been computed for a circular footing with different values of phi. The recent axisymmetric formulation proposed by the authors under phi = 0 condition, which is based on the concept that the magnitude of the hoop stress (sigma(theta)) remains closer to the least compressive normal stress (sigma(3)), is extended for a general c-phi soil. The computational results are found to compare quite well with the available numerical results from literature. It is expected that the study will be useful for solving various axisymmetric geotechnical stability problems. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A connectionist approach for global optimization is proposed. The standard function set is tested. Results obtained, in the case of large scale problems, indicate excellent scalability of the proposed approach
Resumo:
In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
The impulse response of a typical wireless multipath channel can be modeled as a tapped delay line filter whose non-zero components are sparse relative to the channel delay spread. In this paper, a novel method of estimating such sparse multipath fading channels for OFDM systems is explored. In particular, Sparse Bayesian Learning (SBL) techniques are applied to jointly estimate the sparse channel and its second order statistics, and a new Bayesian Cramer-Rao bound is derived for the SBL algorithm. Further, in the context of OFDM channel estimation, an enhancement to the SBL algorithm is proposed, which uses an Expectation Maximization (EM) framework to jointly estimate the sparse channel, unknown data symbols and the second order statistics of the channel. The EM-SBL algorithm is able to recover the support as well as the channel taps more efficiently, and/or using fewer pilot symbols, than the SBL algorithm. To further improve the performance of the EM-SBL, a threshold-based pruning of the estimated second order statistics that are input to the algorithm is proposed, and its mean square error and symbol error rate performance is illustrated through Monte-Carlo simulations. Thus, the algorithms proposed in this paper are capable of obtaining efficient sparse channel estimates even in the presence of a small number of pilots.