107 resultados para C-2
Resumo:
We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.
Resumo:
Diketopyrrolopyrrole (DPP) based molecular semiconductors have emerged as promising materials for high performance active layers in organic solar cells. It is imperative to comprehend the origin of such a property by investigating the fundamental structure property correlation. In this report we have investigated the role of the donor group in DPP based donor-acceptor- donor (D-A-D) structure to govern the solid state, photophysical and electrochemical properties. We have prepared three derivatives of DPP with varying strengths of the donor groups, such as phenyl (PDPP-Hex), thiophene (TDPP-Hex) and selenophene (SeDPP-Hex). The influence of the donor units on the solid state packing was studied by single crystal X-ray diffraction. The photophysical, electrochemical and density functional theory ( DFT) results were combined to elucidate the structural and electronic properties of three DPP derivatives. We found that these DPP derivatives crystallized in the monoclinic space group P21/c and show herringbone packing in the crystal lattice. The derivatives exhibit weak p-p stacking interactions as two neighboring molecules slip away from each other with varied torsional angles at the donor units. The high torsional angle of 32 degrees ( PDPP-Hex) between the phenyl and lactam ring results in weak intramolecular interactions between the donor and acceptor, while TDPP-Hex and SeDPP-Hex show lower torsional angles of 9 degrees and 12 degrees with a strong overlap between the donor and acceptor units. The photophysical properties reveal that PDPP-Hex exhibits a high Stokes shift of 0.32 eV and SeDPP- Hex shows a high molar absorption co-efficient of 33 600 L mol -1 1 cm -1 1 with a low band gap of similar to 2.2 eV. The electrochemical studies of SeDPP- Hex indicate the pronounced effect of selenium in stabilizing the LUMO energy levels and this further emphasizes the importance of chalcogens in developing new n-type organic semiconductors for optoelectronic devices.
Resumo:
A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.
Resumo:
Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C-2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet triplet gap is only wealdy affected. In all the systems we have studied, the excited singlet state, S-i, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S-1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.
Resumo:
An organic-aqueous interfacial reaction at room temperature has been employed to synthesize large-area self-assembled films consisting of PbSe single crystallites. The use of the films for the low-cost fabrication of IR-photodetectors has been explored. (111)-oriented single crystallites of PbSe self-assemble to form robust large-area films. The near-infrared photoresponse of the film measured at room temperature showed large responsivity and gain owing to trap-associated mechanisms. Low-cost, mild reaction conditions and tunability of the nature of deposits make the present strategy useful for synthesizing large-area films of functional materials for possible opto-electronic applications.
Resumo:
The first synthesis of 1,3-thiazine fused peptide mimics is described from N-(3-hydroxypropyl)thioamides under MsCl/NEt3 conditions. The method is amenable to oligopeptidomimics with polar and apolar side chains. Substantial epimerization occurs at chiral C(2) exo methines in non-Pro fused mimics even under neutral conditions. H-1 NMR and crystal structure analyses indicate that the Thi analogues primarily associate with each other through intermolecular hydrogen bonds, involving the nitrogen of 1,3-thiazine and the N-H of the fused residue, which may be the basis for enamination-racemization process in these peptide mimics. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This work is a follow up to 2, FUN 2010], which initiated a detailed analysis of the popular game of UNO (R). We consider the solitaire version of the game, which was shown to be NP-complete. In 2], the authors also demonstrate a (O)(n)(c(2)) algorithm, where c is the number of colors across all the cards, which implies, in particular that the problem is polynomial time when the number of colors is a constant. In this work, we propose a kernelization algorithm, a consequence of which is that the problem is fixed-parameter tractable when the number of colors is treated as a parameter. This removes the exponential dependence on c and answers the question stated in 2] in the affirmative. We also introduce a natural and possibly more challenging version of UNO that we call ``All Or None UNO''. For this variant, we prove that even the single-player version is NP-complete, and we show a single-exponential FPT algorithm, along with a cubic kernel.
Resumo:
Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.
Resumo:
This paper deals with dynamic recrystallization (DRX), static recrystallization, and grain growth phenomena of pure magnesium after equal channel angular pressing (ECAP) by route A and B-C at 523 K (250 A degrees C) followed by 80 pct cold rolling. The ECAP-deformed and the subsequently rolled samples were annealed at 373 K and 773 K (100 A degrees C and 500 A degrees C). The associated changes in the microstructure and texture were studied using electron back-scattered diffraction. ECAP produced an average grain size of 12 to 18 A mu m with B and C-2 fiber textures. Subsequent rolling led to an average grain size 8 to 10 A mu m with basal texture fiber parallel to ND. There was no noticeable increase in the average grain size on annealing at 373 K (100 A degrees C). However, significant increase in the average grain size occurred at 773 K (500 A degrees C). The occurrence of different DRX mechanisms was detected: discontinuous dynamic recrystallization was attributed to basal slip activity and continuous dynamic recovery and recrystallization to prismatic/pyramidal slip systems. Only continuous static recrystallization could be observed on annealing.
Resumo:
Let (M, g) be a compact Ricci-fiat 4-manifold. For p is an element of M let K-max(P) (respectively K-min(p)) denote the maximum (respectively the minimum) of sectional curvatures at p. We prove that if K-max(p) <= -cK(min)(P) for all p is an element of M, for some constant c with 0 <= c < 2+root 6/4 then (M, g) is fiat. We prove a similar result for compact Ricci-flat Kahler surfaces. Let (M, g) be such a surface and for p is an element of M let H-max(p) (respectively H-min(P)) denote the maximum (respectively the minimum) of holomorphic sectional curvatures at p. If H-max(P) <= -cH(min)(P) for all p is an element of M, for some constant c with 0 <= c < 1+root 3/2, then (M, g) is flat. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We study the problem of finding small s-t separators that induce graphs having certain properties. It is known that finding a minimum clique s-t separator is polynomial-time solvable (Tarjan in Discrete Math. 55:221-232, 1985), while for example the problems of finding a minimum s-t separator that induces a connected graph or forms an independent set are fixed-parameter tractable when parameterized by the size of the separator (Marx et al. in ACM Trans. Algorithms 9(4): 30, 2013). Motivated by these results, we study properties that generalize cliques, independent sets, and connected graphs, and determine the complexity of finding separators satisfying these properties. We investigate these problems also on bounded-degree graphs. Our results are as follows: Finding a minimum c-connected s-t separator is FPT for c=2 and W1]-hard for any ca parts per thousand yen3. Finding a minimum s-t separator with diameter at most d is W1]-hard for any da parts per thousand yen2. Finding a minimum r-regular s-t separator is W1]-hard for any ra parts per thousand yen1. For any decidable graph property, finding a minimum s-t separator with this property is FPT parameterized jointly by the size of the separator and the maximum degree. Finding a connected s-t separator of minimum size does not have a polynomial kernel, even when restricted to graphs of maximum degree at most 3, unless .
Resumo:
Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2)
Resumo:
This study reports (1S,2S)-N,N'-dihydroxy-N,N'-bis(diphenylacetyl)-1,2-cyclohexanediamine, a C-2 symmetric chiral hydroxamic acid ((S)-CBHA-DPA), as a unique probe for discrimination of molecules with diverse functionalities. The proposed CSA is also utilized for the accurate measurement of enantiomeric excess.