229 resultados para Borden Chemical Company (Illiopolis, Ill.)
Resumo:
The zeta potential of high-purity hematite at pH 6 and in a 10−3N NaCl solution has been determined at different concentrations of acetone using the streaming potential technique and the results correlated with the microhardness of the mineral. The zeta potential has been found to decrease as the hardness increases reaching a minimum at 10 cc per litre concentration of acetone when the hardness reaches a maximum. The results have been explained on the basis of competitive adsorption of chloride ions and acetone molecules at low concentrations of acetone and coadsorption of both species above 10 cc per litre concentration. Acetone in distilled water and 10−3N NaCl in distilled water decrease the microhardness of hematite individually between pH 5 to 7 and in combination increase the microhardness reaching a maximum at pH 6.
Resumo:
A comparison is made between German and Russian terminological derivations in chemistry and the methods used by Germans and Russians to solve problems related to the fornlrrtion of scientific words. A study of this comparison, it is believed, can help us in the development of scientific words in Indian languages.
Resumo:
Chemical shifts, ΔE, of the X-ray K-absorption edge in several compounds, complexes of copper including its superconducting oxides possessing formal oxidation states +1 and +2 have been measured. It has been shown that the chemical shift is primarily governed by the effective ionic charge on the absorbing ion and the nature of the atoms in the first coordination shell around the absorbing ion. The relation between the chemical shift, ΔE , and the effective charge q on the absorbing ion is found to be ΔE=Aq+Bq2+Cq3+Dq4 (A, B, C and D are constants). The effects of electronegativity, atomic number, oxidation state, crystal structure, the valence d-orbital electrons, etc. on the X-ray absorption chemical shift have been discussed. ©1990 The Physical Society of Japan
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
Stereospecific synthesis of 4-formylcarane (2) has been achieved through hydroboration-carbonylation of DELTA-3-carene. Both the reactions are optimised using sodium borohydride. The method is utilised for the synthesis of sandatrile (3), a novel perfumery chemical.
Resumo:
The chemical potential of oxygen corresponding to the iron-rutile-ilmenite (IRI) and iron-ilmenite-ulvospinel (IIU) equilibria has been measured employing solid-state galvanic cells,$$Pt, Fe + TiO_2 + FeTiO_3 //(Y_2 O_3 ) ZrO_2 //Fe + FeO, Pt$$ and $${\text{Pt, Fe + FeTiO}}_{\text{3}} {\text{ + Fe}}_{\text{2}} {\text{TiO}}_{\text{4}} {\text{//(Y}}_{\text{2}} {\text{0}}_{\text{3}} {\text{) ZrO}}_{\text{2}} {\text{//Fe + FeO, Pt}}$$ in the temperature range of 875 to 1275 K and 900 to 1373 K, respectively. The cells are written such that the right-hand electrodes are positive. The electromotive force (emf) of both the cells was found to be reversible and to vary linearly with temperature over the entire range of measurement. The chemical potential of oxygen for IRI equilibrium is represented by Δμo2(IRI) = -550,724 - 29.445T + 20.374T InT(±210) J mol−1 (875 <-T<- 1184 K) = -620,260 + 369.593T - 27.716T lnT(±210) J mol−1 (1184 <-T<- 1275 K) and that for IIU equilibrium by Δμo2(IIU) = -501,800 - 49.035T + 20.374T lnT(±210) J mol−1 (900 <-T<- 1184 K) = -571,336 + 350.003T− 27.716T lnT(=−210) J mol-1 (1184 <-T<- 1373 K) The standard Gibbs energy changes for IRI and IIU equilibria have been deduced from the measured oxygen potentials. Since ilmenite contains small amounts of Ti³+ ions, a correction for the activity of FeTiO3 has been incorporated by assuming ideal mixing on each cation sublattice in the FeTiO3-Ti2O3 system. Similarly, the ulvospinel contains some Fe³+ ions and a correction for the activity of Fe2TiO4 has been included by modeling the Fe2TiO4-Fe3O4 system. The third-law analysis of the results obtained for IRI equilibrium gives ΔH 298 0 = -575 (±1.0) kJ mol-1 and for IIU equilibrium yields ΔH 298 0 = -523.7 (±0.7) kJ mol−1}. The present results suggest that Fe2+ and Ti4+ cations mix almost ideally on the octahedral site of spinel lattice in Fe2TiO4, giving rise to a configurational contribution of 2R In 2 (11.5256 J mol-1 K-1) to the entropy of Fe2TiO4.
Resumo:
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).
Resumo:
In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.
Resumo:
Cutting of Y2O3-doped TZP rods by a low-speed diamond saw introduces an unidentified, metastable phase X (x-ZrO2) coexisting with the tetragonal (t-ZrO2) and the monoclinic (m-ZrO2) phases initially present in the sample. Further mechanical deformation of the cut surface by indentation or polishing sustains the x-ZrO2. Chemical etching removes the x-ZrO2 and increases the m-ZrO2content.
Resumo:
Organic molecules such as glucose or lactose mediate the synthesis and stabilize alpha-nickel hydroxide in a simple precipitation reaction, while, in the absence of these additives, beta-nickel hydroxide is formed. The additives are not incorporated in the product phase.
Resumo:
Nanostructured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition(CVD). A two zone furnace with a temperature profile having a uniform temperature over a length of 20 cm length has been designed and developed. The precursor Azabenzimidazole was taken in a quartz tube and evaporated at 400 degrees C. The dense vapours enter the pyrolysis zone kept at a desired temperature and deposit on the quartz substrates. The FTIR spectrum of the prepared samples shows peaks at 1272 cm(-1) (C-N stretching) and 1600 cm(-1) (C=N) confirms the bonding of nitrogen with carbon. Raman D and G peaks, are observed at 1360 cm(-1) and 1576 cm(-1) respectively. XPS core level spectra of C 1s and N 1s show the formation of pi bonding between carbon and nitrogen atoms. The size of the nano crystals estimated from the SEM images and XRD is similar to 100 nm. In some regions of the sample a maximum of 57 atom % of nitrogen has been observed.
Resumo:
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.