108 resultados para Bone composition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the potential energy landscape of structure breaking binary mixtures (SBBM) where two constituents dislike each other, yet remain macroscopically homogeneous at intermediate to high temperatures. Interestingly, we find that the origin of strong composition dependent non-ideal behaviour lies in its phase separated inherent structure. The inherent structure (IS) of SBBM exhibits bi-continuous phase as is usually formed during spinodal decomposition. We draw analogy of this correlation between non-ideality and phase separation in IS to explain observation of non-ideality in real aqueous mixtures of small amphiphilic solutes, containing both hydrophilic and hydrophobic groups. Although we have not been able to obtain IS of these liquids, we find that even at room temperature these liquids sustain formation of fluctuating, transient bi-continuous phase, with limited lifetime (tau less than or similar to 20 ps). While in the model (A, B) binary mixture, the non-ideal composition dependence can be considered as a fluctuation from a phase separated state, a similar scenario is expected to be responsible for the unusually strong non-ideality in these aqueous binary mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How similar species co-exist in nature is a fundamental question in community ecology. Resource partitioning has been studied in desert lizard communities across four continents, but data from South Asia is lacking. We used area-constrained visual encounter surveys to study community composition and spatial and temporal resource partitioning in a lizard community during summer in the Thar Desert, western India, addressing an important biogeographic gap in knowledge. Twelve one-hectare grids divided into 25 m x 25 m plots were placed across four habitats barren dunes, stabilized dunes, grassland, and rocky hills. We recorded 1039 sightings of 12 species during 84 sampling sessions. Lizard abundance decreased in the order stabilized dunes > grassland > barren dunes > rocky hills; richness was in roughly the opposite order. Resource partitioning was examined for the seven commonest species. Overall spatial overlap was low (<0.6) between species pairs. Overlap was higher within habitats, but species showed finer separation through use of different microhabitat categories and specific spatial resources, as well as by positioning at different distances to vegetation. Diurnal species were also separated by peak time of activity. Space appears to be an important resource dimension facilitating coexistence in this desert lizard community. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imaging the vasculature close around the finger joints is of interest in the field of rheumatology. Locally increased vasculature in the synovial membrane of these joints can be a marker for rheumatoid arthritis. In previous work we showed that part of the photoacoustically induced ultrasound from the epidermis reflects on the bone surface within the finger. These reflected signals could be wrongly interpreted as new photoacoustic sources. In this work we show that a conventional ultrasound reconstruction algorithm, that considers the skin as a collection of ultrasound transmitters and the PA tomography probe as the detector array, can be used to delineate bone surfaces of a finger. This can in the future assist in the localization of the joint gaps. This can provide us with a landmark to localize the region of the inflamed synovial membrane. We test the approach on finger mimicking phantoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a binary liquid is confined by a strongly repulsive wall, the local density is depleted near the wall and an interface similar to that between the liquid and its vapor is formed. This analogy suggests that the composition of the binary liquid near this interface should exhibit spatial modulation similar to that near a liquid-vapor interface even if the interactions of the wall with the two components of the liquid are the same. The Guggenheim adsorption relation quantifies the concentrations of two components of a binary mixture near a liquid-vapor interface and qualitatively states that the majority (minority) component enriches the interface for negative (positive) mixing energy if the surface tensions of the two components are not very different. From molecular dynamics simulations of binary mixtures with different compositions and interactions we find that the Guggenheim relation is qualitatively satisfied at wall-induced interfaces for systems with negative mixing energy at all state points considered. For systems with positive mixing energy, this relation is found to be qualitatively valid at low densities, while it is violated at state points with high density where correlations in the liquid are strong. This observation is validated by a calculation of the density profiles of the two components of the mixture using density functional theory with the Ramakrishnan-Yussouff free-energy functional. Possible reasons for the violation of the Guggenheim relation are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of normalized electrical resistivity in the system of glasses Ge15Te85-xSnx with (1 <= x <= 5) has been studied as a function of high pressure for pressures up to 9.5 GPa. It is found that with the increase in pressure, the resistivity decreases initially and shows an abrupt fall at a particular pressure, indicating the phase transition from semiconductor to near metallic at these pressures, which lie in the range 1.5-2.5 GPa, and then continues being metallic up to 9.5 GPa. This transition pressure is seen to decrease with the increase in the percentage content of tin due to increasing metallicity of tin. The semiconductor to near metallic transition is exactly reversible and may have its origin in a reduction of the band gap due to high pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a critical cloud fraction' (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Using 4 years of multi-satellite data analysis, we show that CCF varies with aerosol composition and changed from 0.28 to 0.13 from postmonsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. Our results indicate that we can estimate aerosol absorption from space using independently measured top of the atmosphere (TOA) fluxes Cloud Aerosol Lidar with Orthogonal Polarization-Moderate resolution Imaging Spectroradiometer-Clouds and the Earth's Radiant Energy System (CALIPSO-MODIS-CERES)] combined algorithms for example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1168-1179, 2015.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a detailed experimental and numerical investigation of the effect of H-2/CO composition on extinction characteristics of premixed and nonpremixed syngas flames. Experimental measurements of local and global extinction strain rates in counterflow diffusion flames have been reported at atmospheric pressure for six different compositions of syngas fuel. The concentration of H-2 was varied from 5 to 20% with a 3% increment, and correspondingly, CO was decreased from 35 to 20% in steps of 3%. Particle imaging velocimetry has been used to determine the local extinction strain rates. Local extinction strain rates increased with an increase in the H-2/CO ratio in both nonpremixed and premixed flames. The predicted extinction strain rates for both nonpremixed and premixed counterflow flames using five different mechanisms available in the literature were compared with measurements. The Davis H-2/CO and Ranzi H-2/CO mechanisms predicted extinction strain rates within 10% of experimental values irrespective of the H-2/CO ratio. In the nonpremixed case, the Cl mechanism by Li et al., GRI 3.0, and the Ranzi H-2/CO mechanism predicted extinction strain rates well for low H-2/CO ratios (from 5:35 to 14:26) but deviated from experiments for higher H-2/CO values (17:23 and 20:20). In addition to kinetics, preferential diffusion effects were found to affect the reaction zone significantly and create distinct localized reaction zone structures in nonpremixed flames, which could contribute to discrepancies in extinction predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.