192 resultados para Binary Coding
Resumo:
Convolutional network-error correcting codes (CNECCs) are known to provide error correcting capability in acyclic instantaneous networks within the network coding paradigm under small field size conditions. In this work, we investigate the performance of CNECCs under the error model of the network where the edges are assumed to be statistically independent binary symmetric channels, each with the same probability of error pe(0 <= p(e) < 0.5). We obtain bounds on the performance of such CNECCs based on a modified generating function (the transfer function) of the CNECCs. For a given network, we derive a mathematical condition on how small p(e) should be so that only single edge network-errors need to be accounted for, thus reducing the complexity of evaluating the probability of error of any CNECC. Simulations indicate that convolutional codes are required to possess different properties to achieve good performance in low p(e) and high p(e) regimes. For the low p(e) regime, convolutional codes with good distance properties show good performance. For the high p(e) regime, convolutional codes that have a good slope ( the minimum normalized cycle weight) are seen to be good. We derive a lower bound on the slope of any rate b/c convolutional code with a certain degree.
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.
Resumo:
We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.
Resumo:
We report the Brownian dynamics simulation results on the translational and bond-angle-orientational correlations for charged colloidal binary suspensions as the interparticle interactions are increased to form a crystalline (for a volume fraction phi = 0.2) or a glassy (phi = 0.3) state. The translational order is quantified in terms of the two- and four-point density autocorrelation functions whose comparisons show that there is no growing correlation length near the glass transition. The nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant Q(l) and the bond-orientational correlation functions g(l)(t). The l dependence of Q(l) indicates that icosahedral (l = 6) order predominates at the cost of the cubic order (l = 4) near the glass as well as the crystal transition. The density and orientational correlation functions for a supercooled liquid freezing towards a glass fit well to the streched-exponential form exp[-(t/tau)(beta)]. The average relaxation times extracted from the fitted stretched-exponential functions as a function of effective temperatures T* obey the Arrhenius law for liquids freezing to a crystal whereas these obey the Vogel-Tamman-Fulcher law exp[AT(0)*/(T* - T-0*)] for supercooled Liquids tending towards a glassy state. The value of the parameter A suggests that the colloidal suspensions are ''fragile'' glass formers like the organic and molecular liquids.
Resumo:
A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.
Resumo:
An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
Passing a H-2-CH4 mixture over oxide spinels containing two transition elements as in Mg0.8MyMz'Al2O4 (M, M' = Fe, Co or Ni, y + z = 0.2) at 1070 degrees C produces small alloy nanoparticles which enable the formation of carbon nanotubes. Surface area measurements are found to be useful for assessing the yield and quality of the nanotubes. Good-quality single-walled nanotubes (SWNTs) have been obtained in high yields with the FeCo alloy nanoparticles, as evidenced by transmission electron microscope images and surface area measurements. The diameter of the SWNTs is in the 0.8-5 nm range, and the multiwalled nanotubes, found occasionally, possess very few graphite layers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A single-source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the incoming symbols (received at their incoming edges) on their outgoing edges. Memory-free networks with delay using network coding are forced to do inter-generation network coding, as a result of which the problem of some or all sinks requiring a large amount of memory for decoding is faced. In this work, we address this problem by utilizing memory elements at the internal nodes of the network also, which results in the reduction of the number of memory elements used at the sinks. We give an algorithm which employs memory at all the nodes of the network to achieve single- generation network coding. For fixed latency, our algorithm reduces the total number of memory elements used in the network to achieve single- generation network coding. We also discuss the advantages of employing single-generation network coding together with convolutional network-error correction codes (CNECCs) for networks with unit- delay and illustrate the performance gain of CNECCs by using memory at the intermediate nodes using simulations on an example network under a probabilistic network error model.
Resumo:
This paper considers the design and analysis of a filter at the receiver of a source coding system to mitigate the excess distortion caused due to channel errors. The index output by the source encoder is sent over a fading discrete binary symmetric channel and the possibly incorrect received index is mapped to the corresponding codeword by a Vector Quantization (VQ) decoder at the receiver. The output of the VQ decoder is then processed by a receive filter to obtain an estimate of the source instantiation. The distortion performance is analyzed for weighted mean square error (WMSE) and the optimum receive filter that minimizes the expected distortion is derived for two different cases of fading. It is shown that the performance of the system with the receive filter is strictly better than that of a conventional VQ and the difference becomes more significant as the number of bits transmitted increases. Theoretical expressions for an upper and lower bound on the WMSE performance of the system with the receive filter and a Rayleigh flat fading channel are derived. The design of a receive filter in the presence of channel mismatch is also studied and it is shown that a minimax solution is the one obtained by designing the receive filter for the worst possible channel. Simulation results are presented to validate the theoretical expressions and illustrate the benefits of receive filtering.
Resumo:
In this paper, we show that it is possible to reduce the complexity of Intra MB coding in H.264/AVC based on a novel chance constrained classifier. Using the pairs of simple mean-variances values, our technique is able to reduce the complexity of Intra MB coding process with a negligible loss in PSNR. We present an alternate approach to address the classification problem which is equivalent to machine learning. Implementation results show that the proposed method reduces encoding time to about 20% of the reference implementation with average loss of 0.05 dB in PSNR.
Resumo:
Investigation of the reaction of La2CuO4 with several binary metal oxides in the solid state at elevated temperatures has revealed three different reaction pathways. Reaction of La2CuO4 with strongly acidic oxides such as Re2O7, MoO3, and V2O5 follows a metathesis route, yielding a mixture of products: La3ReO8/La2MoO6/LaVO4 and CuO. Oxides such as TiO2, MnO2, and RuO2 which are not so acidic yield addition products: La2CuMO6 (M = Ti, Mn, Ru). SnO2 is a special case which appears to follow a metathesis route, giving La2Sn2O7 pyrochlore and CuO, which on prolonged reaction transform to the layered perovskite La2CuSnO6. The reaction of La2CuO4 with lower valence oxides VO2 and MoO2, on the other hand, follows a novel redox metathesis route, yielding a mixture of LaVO4/LaCuO2 and La2MoO6/Cu, respectively. This result indicates that it is the redox reactivity involving V-IV + Cu-II --> V-V + Cu-I and Mo-IV + Cu-II --> Mo-VI + Cu-0, and not the acidity of the binary oxide, that controls the nature of the products formed in these cases. The general significance of these results toward the synthesis of complex metal oxides containing several metal atoms is discussed.