102 resultados para Best algebraic approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary cellular standards, such as Long Term Evolution (LTE) and LTE-Advanced, employ orthogonal frequency-division multiplexing (OFDM) and use frequency-domain scheduling and rate adaptation. In conjunction with feedback reduction schemes, high downlink spectral efficiencies are achieved while limiting the uplink feedback overhead. One such important scheme that has been adopted by these standards is best-m feedback, in which every user feeds back its m largest subchannel (SC) power gains and their corresponding indices. We analyze the single cell average throughput of an OFDM system with uniformly correlated SC gains that employs best-m feedback and discrete rate adaptation. Our model incorporates three schedulers that cover a wide range of the throughput versus fairness tradeoff and feedback delay. We show that, for small m, correlation significantly reduces average throughput with best-m feedback. This result is pertinent as even in typical dispersive channels, correlation is high. We observe that the schedulers exhibit varied sensitivities to correlation and feedback delay. The analysis also leads to insightful expressions for the average throughput in the asymptotic regime of a large number of users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Practical orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), exploit multi-user diversity using very limited feedback. The best-m feedback scheme is one such limited feedback scheme, in which users report only the gains of their m best subchannels (SCs) and their indices. While the scheme has been extensively studied and adopted in standards such as LTE, an analysis of its throughput for the practically important case in which the SCs are correlated has received less attention. We derive new closed-form expressions for the throughput when the SC gains of a user are uniformly correlated. We analyze the performance of the greedy but unfair frequency-domain scheduler and the fair round-robin scheduler for the general case in which the users see statistically non-identical SCs. An asymptotic analysis is then developed to gain further insights. The analysis and extensive numerical results bring out how correlation reduces throughput.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of wireless sensor networks, we are motivated by the design of a tree network spanning a set of source nodes that generate packets, a set of additional relay nodes that only forward packets from the sources, and a data sink. We assume that the paths from the sources to the sink have bounded hop count, that the nodes use the IEEE 802.15.4 CSMA/CA for medium access control, and that there are no hidden terminals. In this setting, starting with a set of simple fixed point equations, we derive explicit conditions on the packet generation rates at the sources, so that the tree network approximately provides certain quality of service (QoS) such as end-to-end delivery probability and mean delay. The structures of our conditions provide insight on the dependence of the network performance on the arrival rate vector, and the topological properties of the tree network. Our numerical experiments suggest that our approximations are able to capture a significant part of the QoS aware throughput region (of a tree network), that is adequate for many sensor network applications. Furthermore, for the special case of equal arrival rates, default backoff parameters, and for a range of values of target QoS, we show that among all path-length-bounded trees (spanning a given set of sources and the data sink) that meet the conditions derived in the paper, a shortest path tree achieves the maximum throughput. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present two new stochastic approximation algorithms for the problem of quantile estimation. The algorithms uses the characterization of the quantile provided in terms of an optimization problem in 1]. The algorithms take the shape of a stochastic gradient descent which minimizes the optimization problem. Asymptotic convergence of the algorithms to the true quantile is proven using the ODE method. The theoretical results are also supplemented through empirical evidence. The algorithms are shown to provide significant improvement in terms of memory requirement and accuracy.