158 resultados para Bacterial transformation
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.
Resumo:
Fabrication of 0.65Pb(Mg1/3Nb2./3)O-3-0.35PbTiO(3) (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 degrees C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 degrees C. Annealed at around 700 degrees C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677974]
Resumo:
Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.
Resumo:
Sol-gel processing followed by H2 reduction is used to produce dispersions of nanosized Pb in amorphous SiO2 and ultrafine γ Al2O3 matrices. A depression of 3–5K in Pb melting point is reported. The size and shape of these metastable particles in molten and solid state are discussed in the light of the experimental observations and expectations from the intersection group theory for equilibrium shape.
Resumo:
We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.
Resumo:
Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.
Resumo:
The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An efficient methodology to oxidize benzylic and cinnamyl alcohols to their corresponding nitriles in excellent yields has been developed. This methodology employs DDQ as an oxidant and TMSN3 as a source of nitrogen in the presence of a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O.
Resumo:
A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.
Resumo:
Two transcription termination mechanisms - intrinsic and Rho-dependent - have evolved in bacteria. The Rho factor occurs in most bacterial lineages, and has been hypothesized to play a global regulatory role. Genome-wide studies using microarray, 2D-gel electrophoresis and ChIP-chip provided evidence that Rho serves to silence transcription from horizontally acquired genes and prophages in Escherichia coli K-12, implicating the factor to be a part of the ``cellular immune mechanism'' protecting against deleterious phages and aberrant gene expression from acquired xenogenic DNA. We have investigated this model by adopting an alternate in silico approach and have extended the study to other species. Our analysis shows that several genomic islands across diverse phyla have under-representation of intrinsic terminators, similar to that experimentally observed in E. coli K-12. This implies that Rho-dependent termination is the predominant process operational in these islands and that silencing of foreign DNA is a conserved function of Rho. From the present analysis, it is evident that horizontally acquired islands have lost intrinsic terminators to facilitate Rho-dependent termination. These results underscore the importance of Rho as a conserved, genome-wide sentinel that regulates potentially toxic xenogenic DNA. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The terms phase transformation, polymorphism, disorder, isosterism, and isostructuralism are often the keywords used in the design and engineering of molecular crystals. Three benzoylcarvacryl thiourea derivatives with -NH-C(S)-NH-C(O)-] cores generate molecular crystals, which provide the basis for exploring a common link between the structures related by aforementioned terms. The apparent ``origin'' of all these structural modifications has been traced to the formation of a planar molecular dimeric chain built with homomeric R-2(2)(12) and R-2(2)(8) synthons occurring in tandem, one formed with N-H center dot center dot center dot O and the other with N-H center dot center dot center dot S hydrogen bonds.
Resumo:
The lead free ferroelectric Na1/2Bi1/2TiO3 (NBT) is shown to exhibit electric-field-induced monoclinic (Cc) to rhombohedral (R3c) phase transformation at room temperature. This phenomenon has been analyzed both from the viewpoint of the intrinsic polarization rotation and adaptive phase models. In analogy with the morphotropic phase boundary systems, NBT seems to possess intrinsic competing ferroelectric instabilities near room temperature.