122 resultados para BIOMASS COMPOSITION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron powder diffraction study of Ba(Ti1-xZrx)O-3 at close composition intervals has revealed coexistence of ferroelectric phases: orthorhombic (Amm2) + tetragonal (P4mm) for 0.02 <= x <= 0.05 and rhombohedral (R3m) + orthorhombic (Amm2) for 0.07 <= x < 0.09. These compositions exhibit relatively enhanced piezoelectric properties as compared to their single phase counterparts outside this composition region, confirming the polymorphic phase boundary nature of the phase coexistence regions. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presented are new measurements of the standard Gibbs free energy of formation of rhombohedral LaCrO3 from component oxides La2O3 and Cr2O3 in the temperature range from 875 to 1175K, using a bielectrolyte solid-state cell incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3)(y)(CaF2)(1-y) (y=0-0.32). The results can be represented analytically as Delta G(f(ox))(o) (+/- 2270)/Jmol(-1)=-72329+4.932 (T/K). The measurements were undertaken to resolve serious discrepancies in the data reported in the literature. A critical analysis of previous electrochemical measurements indicates several deficiencies that have been rectified in this study. The enthalpy of formation obtained in this study is consistent with calorimetric data. The standard enthalpy of formation of orthorhombic LaCrO3 from elements at 298.15K computed from the results of this study is Delta H-f(298.15)(o)/kJmol(-1)=-1536.2 (+/- 7). The standard entropy of orthorhombic LaCrO3 at 298.15K is estimated as 99.0 (+/- 4.5)J(molK)(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years new emphasis has been placed on problems of the environmental aspects of waste disposal, especially investigating alternatives to landfill, sea dumping and incineration. There is also a strong emphasis on clean, economic and efficient processes for electric power generation. These two topics may at first appear unrelated. Nevertheless, the technological advances are now such that a solution to both can be combined in a novel approach to power generation based on waste-derived fuels, including refuse-derived fuel (RDF) and sludge power (SP) by utilising a slagging gasifier and advance fuel technology (AFT). The most appropriate gasification technique for such waste utilisation is the British Gas/Lurgi (BGL) high pressure, fixed bed slagging gasifier where operation on a range of feedstocks has been well-documented. This gasifier is particularly amenable to briquette fuel feeding and, operating in an integrated gasification combined cycle mode (IGCC), is particularly advantageous. Here, the author details how this technology has been applied to Britain's first AFT-IGCC Power Station which is now under development at Fife Energy Ltd., in Scotland, the former British Gas Westfield Development Centre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of a complete solid solution between acetylacetonate (acac) complexes of chromium and gallium, (Cr1-x,Ga-x)(acac)(3) for 0.1 composition to have a congruent melting point, making it a substitutional complex. Whereas the pure complexes (i.e. the end members of the solid solution, x = 0 and x = 1) are both centro-symmetric, a composition-dependent crystallographic phase transition to a non-centrosymmetric structure is found to occur for compositions with 0.4 < x < 0.9. Such a ``re-entrant'' crystallographic transition is interpreted to be due to the drive to overcome the disorder present in certain centrosymmetric chromium-rich compositions, by going over to a non-centrosymmetric structure with a doubling of the unit cell. The substitutional complex is shown to lead to a substitutional oxide with the beta-gallate structure. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current understanding of wildfire effects on water chemistry is limited by the quantification of the elemental dissolution rates from ash and element release rate from the plant litter, as well as quantification of the specific ash contribution to stream water chemistry. The main objective of the study was to provide such knowledge through combination of experimental modelling, field data and end-member mixing analysis (EMMA) of wildfire impact on a watershed scale. The study concerns watershed effects of fire in the Indian subcontinent, a region that is typically not well represented in the fire science literature. In plant litter ash, major elements are either hosted in readily-soluble phases (K, Mg) such as salts, carbonates and oxides or in less-soluble carrier-phases (Si, Ca) such as amorphous silica, quartz and calcite. Accordingly, elemental release rates, inferred from ash leaching experiments in batch reactor, indicated that the element release into solution followed the order K > Mg > Na > Si > Ca. Experiments on plant litter leaching in mixed-flow reactor indicated two dissolution regimes: rapid, over the week and slower over the month. The mean dissolution rates at steady-state (R-ss) indicated that the release of major elements from plant litter followed the order Ca > Si > Cl > Mg > K > Na. R-ss for Si and Ca for tree leaves and herbaceous species are similar to those reported for boreal and European tree species and are higher than that from the dissolution of soil clay minerals. This identifies tropical plant litters as important source of Si and Ca for tropical surface waters. In the wildfire-impacted year 2004, the EMMA indicated that the streamflow composition (Ca, K, Mg, Na, Si, Cl) was controlled by four main sources: rainwater, throughfall, ash leaching and soil solution. The influence of the ash end-member was maximal early in the rainy season (the two first storm events) and decreased later in the rainy season, when the stream was dominated by the throughfall end-member. The contribution of plant litter decay to the streamwater composition for a year not impacted by wildfire is significant with estimated solute fluxes originating from this decay greatly exceed, for most major elements, the annual elemental dissolved fluxes at the Mule Hole watershed outlet. This highlighted the importance of solute retention and vegetation back uptake processes within the soil profile. Overall, the fire increased the mobility and export of major elements from the soils to the stream. It also shifted the vegetation-related contribution to the elemental fluxes at the watershed outlet from long-term (seasonal) to short-term (daily to monthly). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural multispecies acoustic choruses such as the dusk chorus of a tropical rain forest consist of simultaneously signalling individuals of different species whose calls travel through a common shared medium before reaching their `intended' receivers. This causes masking interference between signals and impedes signal detection, recognition and localization. The levels of acoustic overlap depend on a number of factors, including call structure, intensity, habitat-dependent signal attenuation and receiver tuning. In addition, acoustic overlaps should also depend on caller density and the species composition of choruses, including relative and absolute abundance of the different calling species. In this study, we used simulations to examine the effects of chorus species relative abundance and caller density on the levels of effective heterospecific acoustic overlap in multispecies choruses composed of the calls of five species of crickets and katydids that share the understorey of a rain forest in southern India. We found that on average species-even choruses resulted in higher levels of effective heterospecific acoustic overlap than choruses with strong dominance structures. This effect was found consistently across dominance levels ranging from 0.4 to 0.8 for larger choruses of forty individuals. For smaller choruses of twenty individuals, the effect was seen consistently for dominance levels of 0.6 and 0.8 but not 0.4. Effective acoustic overlap (EAO) increased with caller density but the manner and extent of increase depended both on the species' call structure and the acoustic context provided by the composition scenario. The Phaloria sp. experienced very low levels of EAO and was highly buffered to changes in acoustic context whereas other species experienced high FAO across contexts or were poorly buffered. These differences were not simply predictable from call structures. These simulation-based findings may have important implications for acoustic biodiversity monitoring and for the study of acoustic masking interference in natural environments. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of post- deposition annealing on the composition and electrical properties of alumina (Al2O3) thin films. Al2O3 were deposited on n-type Si < 100 >. substrates by dc reactive magnetron sputtering. The films were subjected to post- deposition annealing at 623, 823 and 1023 K in vacuum. X-ray photoelectron spectroscopy results revealed that the composition improved with post- deposition annealing, and the film annealed at 1023 K became stoichiometric with an O/Al atomic ratio of 1.49. Al/Al2O3/Si metal-oxide-semiconductor (MOS) structures were then fabricated, and a correlation between the dielectric constant epsilon(r) and interface charge density Q(i) with annealing conditions were studied. The dielectric constant of the Al2O3 thin films increased to 9.8 with post- deposition annealing matching the bulk value, whereas the oxide charge density decreased to 3.11 x 10(11) cm(-2.) Studies on current-voltage IV characteristics indicated ohmic and Schottky type of conduction at lower electric fields (<0.16 MV cm(-1)) and space charge limited conduction at higher electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative bi-electrolyte solid-state cells incorporating single crystal CaF2 and composition-graded solid electrolyte (LaF3) y (CaF2) 1-y (y = 0 to 0.32) were used for measurement of the standard Gibbs energy of formation of hexagonal La0.885Al11.782O19 and cubic LaAlO3 from component binary oxides La2O3 and alpha-Al2O3 in the temperature range from 875 to 1175 K. The cells were designed based on experimentally verified relevant phase relations in the systems La2O3-Al2O3LaF3 and CaF2-LaF3. The results can be summarized as: 5.891 alpha-Al2O3 + 0.4425 La2O3 (A-rare earth)-> La0.885Al11.782O19 (hex), Delta G(f(ox))(degrees)(+/- 2005)/Jmol(-1) = -80982 + 7.313(T/K); 1/2 La2O3 (A-rare earth) + 1/2 a-Al2O3 -> LaAlO3 (cubic), Delta G(f(ox))(degrees)(+/- 2100)/Jmol(-1) = -59810 + 4.51(T/K). Electron probe microanalysis was used to ascertain the non-stoichiometric range of the hexaaluminate phase. The results are critically analyzed in the light of earlier electrochemical measurements. Several imperfections in the electrochemical cells used by former investigators are identified. Data obtained in the study for LaAlO3 are consistent with calorimetric enthalpy of formation and entropy derived from heat capacity data. Estimated are the standard entropy and the standard enthalpy of formation from elements of hexagonal La0.885Al11.782O19 and rhombohedral LaAlO3 at 298.15 K. c 2014 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gasification is an energy transformation process in which solid fuel undergoes thermochemical conversion to produce gaseous fuel, and the two most important criteria involved in such process to evaluate the performance, economics and sustainability of the technology are: the total available energy (exergy) and the energy conserved (energy efficiency). Current study focuses on the energy and exergy analysis of the oxy-steam gasification and comparing with air gasification to optimize the H-2 yield, efficiency and syngas energy density. Casuarina wood is used as a fuel, and mixture of oxygen and steam in different proportion and amount is used as a gasifying media. The results are analysed with respect to varying equivalence ratio and steam to biomass ratio (SBR). Elemental mass balance technique is employed to ensure the validity of results. First and second law thermodynamic analysis is used towards time evaluation of energy and exergy analysis. Different component of energy input and output has been studied carefully to understand the influence of varying SBR on the availability of energy and irreversibility in the system to minimize the losses with change in input parameters for optimum performance. The energy and exergy losses (irreversibility) for oxy-steam gasification system are compared with the results of air gasification, and losses are found to be lower in oxy-steam thermal conversion; which has been argued and reasoned due to the presence of N-2 in the air-gasification. The maximum exergy efficiency of 85% with energy efficiency of 82% is achieved at SBR of 0.75 on the molar basis. It has been observed that increase in SBR results in lower exergy and energy efficiency, and it is argued to be due to the high energy input in steam generation and subsequent losses in the form of physical exergy of steam in the product gas, which alone accounts for over 18% in exergy input and 8.5% in exergy of product gas at SBR of 2.7. Carbon boundary point (CBP), is identified at the SBR of 1.5, and water gas shift (WGS) reaction plays a crucial role in H-2 enrichment after carbon boundary point (CBP) is reached. Effects of SBR and CBP on the H-2/CO ratio is analysed and discussed from the perspective of energy as well as the reaction chemistry. Energy density of syngas and energy efficiency is favoured at lower SBR but higher SBR favours H-2 rich gas at the expense of efficiency. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.