164 resultados para Automatic selection
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
Savitzky-Golay (S-G) filters are finite impulse response lowpass filters obtained while smoothing data using a local least-squares (LS) polynomial approximation. Savitzky and Golay proved in their hallmark paper that local LS fitting of polynomials and their evaluation at the mid-point of the approximation interval is equivalent to filtering with a fixed impulse response. The problem that we address here is, ``how to choose a pointwise minimum mean squared error (MMSE) S-G filter length or order for smoothing, while preserving the temporal structure of a time-varying signal.'' We solve the bias-variance tradeoff involved in the MMSE optimization using Stein's unbiased risk estimator (SURE). We observe that the 3-dB cutoff frequency of the SURE-optimal S-G filter is higher where the signal varies fast locally, and vice versa, essentially enabling us to suitably trade off the bias and variance, thereby resulting in near-MMSE performance. At low signal-to-noise ratios (SNRs), it is seen that the adaptive filter length algorithm performance improves by incorporating a regularization term in the SURE objective function. We consider the algorithm performance on real-world electrocardiogram (ECG) signals. The results exhibit considerable SNR improvement. Noise performance analysis shows that the proposed algorithms are comparable, and in some cases, better than some standard denoising techniques available in the literature.
Resumo:
In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.
Resumo:
There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.
Resumo:
Opportunistic selection is a practically appealing technique that is used in multi-node wireless systems to maximize throughput, implement proportional fairness, etc. However, selection is challenging since the information about a node's channel gains is often available only locally at each node and not centrally. We propose a novel multiple access-based distributed selection scheme that generalizes the best features of the timer scheme, which requires minimal feedback but does not always guarantee successful selection, and the fast splitting scheme, which requires more feedback but guarantees successful selection. The proposed scheme's design explicitly accounts for feedback time overheads unlike the conventional splitting scheme and guarantees selection of the user with the highest metric unlike the timer scheme. We analyze and minimize the average time including feedback required by the scheme to select. With feedback overheads, the proposed scheme is scalable and considerably faster than several schemes proposed in the literature. Furthermore, the gains increase as the feedback overhead increases.
Resumo:
Training for receive antenna selection (AS) differs from that for conventional multiple antenna systems because of the limited hardware usage inherent in AS. We analyze and optimize the performance of a novel energy-efficient training method tailored for receive AS. In it, the transmitter sends not only pilots that enable the selection process, but also an extra pilot that leads to accurate channel estimates for the selected antenna that actually receives data. For time-varying channels, we propose a novel antenna selection rule and prove that it minimizes the symbol error probability (SEP). We also derive closed-form expressions for the SEP of MPSK, and show that the considered training method is significantly more energy-efficient than the conventional AS training method.
Resumo:
This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.
Resumo:
MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.
Resumo:
Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.
Resumo:
Compressive Sampling Matching Pursuit (CoSaMP) is one of the popular greedy methods in the emerging field of Compressed Sensing (CS). In addition to the appealing empirical performance, CoSaMP has also splendid theoretical guarantees for convergence. In this paper, we propose a modification in CoSaMP to adaptively choose the dimension of search space in each iteration, using a threshold based approach. Using Monte Carlo simulations, we show that this modification improves the reconstruction capability of the CoSaMP algorithm in clean as well as noisy measurement cases. From empirical observations, we also propose an optimum value for the threshold to use in applications.
Resumo:
In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.
Resumo:
Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.
Resumo:
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson's Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Resumo:
Classification of a large document collection involves dealing with a huge feature space where each distinct word is a feature. In such an environment, classification is a costly task both in terms of running time and computing resources. Further it will not guarantee optimal results because it is likely to overfit by considering every feature for classification. In such a context, feature selection is inevitable. This work analyses the feature selection methods, explores the relations among them and attempts to find a minimal subset of features which are discriminative for document classification.
Resumo:
In this paper, we present a methodology for identifying best features from a large feature space. In high dimensional feature space nearest neighbor search is meaningless. In this feature space we see quality and performance issue with nearest neighbor search. Many data mining algorithms use nearest neighbor search. So instead of doing nearest neighbor search using all the features we need to select relevant features. We propose feature selection using Non-negative Matrix Factorization(NMF) and its application to nearest neighbor search. Recent clustering algorithm based on Locally Consistent Concept Factorization(LCCF) shows better quality of document clustering by using local geometrical and discriminating structure of the data. By using our feature selection method we have shown further improvement of performance in the clustering.