257 resultados para Amount h-b CH4
Resumo:
A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.
Resumo:
The crystal state conformations of three peptides containing the a,a-dialkylated residues, a,adi n-propylglycine (Dpg) and a,@-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe ( I ) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II @-turn conformations with Ala ( I ) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: 4 = 66.23 J/ = 19.3'; III: 4 = 66S0, J. = 21 .la)deviate appreciablyfrom ideal values for the i + 2 residue in a type II @-turn. In both peptides the observed(N. 0) distances between the Boc CO andAla(3) NHgroups are far too long (I:3.44 k; III: 3.63 k) for an intramolecular 4 + 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II)crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive @-turn (type III-III in IIA and type III-I in IIB) or incipient 3,,,-helical structures, stabilized by two intramolecular 4 --t I hydrogen bonds. In all four molecules the bond angle N-C"-C' ( T ) at the Dxg residues are 2 1109 The observation of conformational angles in the helical region of 4,J/ space at these residues is consistent with theoretical predictions
Resumo:
A BEM formulation to obtain the inelastic response of R.C. Beam-Column joints subjected to sinusoidal loading along the boundary is presented. The equations of motion are written along with kinematical and constitutive equations. The dynamic reciprocal theorem is presented and the temporal dependence is removed by assuming steady state response.
Resumo:
Reactions of [PdIVB-(AI)2]++ [PdIICl4]-- (i) B-(AI)2 = dianion of N,N'-ethylene-/i-propylene-/n-propylene-bis(acetyl-acetoneimine) with some π-acceptor ligands, aliphatic primary amines and nitrosating reagents have been investigated. In all these reactions except nitrosation, 1:1 adducts having the formula, [PdIVB-(AI)2.X] [PdIICl4] [X = triphenylphosphine (TPP), triphenylarsine (TPA), pyridine (Py), methylamine (CH3NH2) or ethylamine (C2H5NH2)] are obtained. The formation of these complexes is associated with a bond isomerization - from Pd-Cxo-π -allylic bond prevailing in [PdIVB-(AI)2]2+ to PdIV-O bonding.Reaction of (i) with nitrosating reagents reduces PdIV to PdII and subsequently transform the γ-CH group, into an ambidentate isonitroso group (°C = NOH). The latter enters into coordination with PdII by dislodging the already coordinated carbonyl group. Further, selective nitrosation (mono- and dinitrosation) has been carried out by controlling the amount of the nitrosating reagent and the reaction time. The complexes have been characterized by elemental analyses, electrical conductivity, magnetic susceptibility and ir spectral data.
Resumo:
Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.
Resumo:
Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved
Resumo:
The addition of small amounts of B to Ti-6Al-4V alloy reduces the as-cast grain size by an order of magnitude and introduces TiB phase into the microstructure. The effects of these microstructural modifications on both the high cycle fatigue and cyclic stress-strain response were investigated. Experimental results show that B addition markedly enhances the fatigue strength of the alloy; however, the influence of prior-beta grain size was found to be only marginal. The presence of TiB particles in the matrix appears to be beneficial with the addition of 0.55 wt.% B to Ti-6Al-4V enhancing the fatigue strength by more than 50%. Strain-controlled fatigue experiments reveal softening in the cyclic stress-strain response, which increases with the B content in the alloy. Transmission electron microscopy of the fatigued specimens indicates that generation of dislocations during cyclic loading and creation of twins due to strain incompatibility between the matrix and the TiB phase are possible reasons for the observed softening. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral twofold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon =g(-), xi =t) B-II conformation at the 10(th) position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures
Resumo:
Total syntheses of (±)-1,4-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol(11a), (±)-2,3-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol (11b), and (±)-3-methoxy-6,6-dimethyl-B-norestra-1,3,5(10)trien-17?-ol (11c), have been carried out starting from 4,7-dimethoxy-3,3-dimethylindan-1-one (1), 5,6-dimethoxy-3,3-dimethylindan-1-one (2), and 4?-methoxy-3-methylbut-2-enophenone (4), respectively. Generally, it is found that the intermediate 6,6-dimethyl-B-norestra-1,3,5(10),8-tetraen-17?-ols (10), on lithium�liquid ammonia reduction, yield a mixture of 8?,9?- and 8?,9?-trienols, (11) and (12) respectively, in the ratio 1 : 1. This is due to the comparable stabilities of these two isomers. However, the reduction carried out in presence of aniline affords a higher percentage of the 8?,9?-trienol (11). The assignment of configurations is made by chemical and 1H n.m.r. analysis. Catalytic hydrogenation of the tetraenols (10) is shown to proceed via initial isomerisation to the corresponding 6,6-dimethyl-B-norestra-1,3,5(10),9(11)-tetraen-17?-ols (26), followed by hydrogenation from the ?-side to give, exclusively, the 8?,9?-trienols (12).
Resumo:
The solid-state transformation behaviour of the icosahedral phase in rapidly solidified Al-20 at.% Mn has been investigated by in situ heating experiments in the transmission electron microscope. As-rapidly-solidified Al-20 at.% Mn consists mainly of a dendritic icosahedral phase, with a small amount of interdendritic f.c.c. agr-Al. During subsequent heat treatment at temperatures below about 500°C, the dendritic icosahedral phase grows and consumes the interdendritic agr-Al. At about 500°C the decagonal phase nucleates near icosahedral dendrite and grain boundaries and then grows into the icosahedral matrix by lateral motion of ledges 10-20 nm high across facet planes normal to the twofold symmetry axes. At about 600°C the decagonal phase transforms into a crystalline phase. The present study suggests that solid-state decomposition of the icosahedral phase is the mechanism of decagonal phase formation in as-rapidly-solidified Al-Mn alloys.
Resumo:
Measurements of the electrical resistivity of thin potassium wires at temperatures near 1 K have revealed a minimum in the resistivity as a function of temperature. By proposing that the electrons in these wires have undergone localization, albeit with large localization length, and that inelastic-scattering events destroy the coherence of that state, we can explain both the magnitude and shape of the temperature-dependent resistivity data. Localization of electrons in these wires is to be expected because, due to the high purity of the potassium, the elastic mean free path is comparable to the diameters of the thinnest samples, making the Thouless length lT (or inelastic diffusion length) much larger than the diameter, so that the wire is effectively one dimensional. The inelastic events effectively break the wire into a series of localized segments, whose resistances can be added to obtain the total resistance of the wire. The ensemble-averaged resistance for all possible segmented wires, weighted with a Poisson distribution of inelastic-scattering lengths along the wire, yields a length dependence for the resistance that is proportional to [L3/lin(T)], provided that lin(T)?L, where L is the sample length and lin(T) is some effective temperature-dependent one-dimensional inelastic-scattering length. A more sophisticated approach using a Poisson distribution in inelastic-scattering times, which takes into account the diffusive motion of the electrons along the wire through the Thouless length, yields a length- and temperature-dependent resistivity proportional to (L/lT)4 under appropriate conditions. Inelastic-scattering lifetimes are inferred from the temperature-dependent bulk resistivities (i.e., those of thicker, effectively three-dimensional samples), assuming that a minimum amount of energy must be exchanged for a collision to be effective in destroying the phase coherence of the localized state. If the dominant inelastic mechanism is electron-electron scattering, then our result, given the appropriate choice of the channel number parameter, is consistent with the data. If electron-phason scattering were of comparable importance, then our results would remain consistent. However, the inelastic-scattering lifetime inferred from bulk resistivity data is too short. This is because the electron-phason mechanism dominates in the inelastic-scattering rate, although the two mechanisms may be of comparable importance for the bulk resistivity. Possible reasons why the electron-phason mechanism might be less effective in thin wires than in bulk are discussed.
Resumo:
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.
Resumo:
The expression of cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes has been studied as a function of development in rat liver. The levels of cytochrome P-450 (b+e) mRNAs and their transcription rates are too low for detection in the 19-day old fetal liver before or after phenobarbitone treatment. However, glutathione transferase (Ya+Yc) mRNAs can be detected in the fetal liver as well as their induction after phenobarbitone treatment can be demonstrated. These mRNAs contents as well as their inducibility with phenobarbitone are lower in maternal liver than that of adult nonpregnant female rat liver. Steroid hormone administration to immature rats blocks substantially the phenobarbitone mediated induction of the two mRNA families as well as their transcription. It is suggested that steroid hormones constitute one of the factors responsible for the repression of the cytochrome P-450 (b+e) and glutathione transferase (Ya+Yc) genes in fetal liver.
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.
Resumo:
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 angstrom and c = 44.59 angstrom. The structure has been determined by X-ray diffraction methods at 2.2 angstrom resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.