102 resultados para Algebraic Bethe Ansatz
Resumo:
This paper presents numerical simulation of the evolution of one-dimensional normal shocks, their propagation, reflection and interaction in air using a single diaphragm Riemann shock tube and validate them using experimental results. Mathematical model is derived for one-dimensional compressible flow of viscous and conducting medium. Dimensionless form of the mathematical model is used to construct space-time finite element processes based on minimization of the space-time residual functional. The space-time local approximation functions for space-time p-version hierarchical finite elements are considered in higher order GRAPHICS] spaces that permit desired order of global differentiability of local approximations in space and time. The resulting algebraic systems from this approach yield unconditionally positive-definite coefficient matrices, hence ensure unique numerical solution. The evolution is computed for a space-time strip corresponding to a time increment Delta t and then time march to obtain the evolution up to any desired value of time. Numerical studies are designed using recently invented hand-driven shock tube (Reddy tube) parameters, high/low side density and pressure values, high- and low-pressure side shock tube lengths, so that numerically computed results can be compared with actual experimental measurements.
Resumo:
A Field Programmable Gate Array (FPGA) based hardware accelerator for multi-conductor parasitic capacitance extraction, using Method of Moments (MoM), is presented in this paper. Due to the prohibitive cost of solving a dense algebraic system formed by MoM, linear complexity fast solver algorithms have been developed in the past to expedite the matrix-vector product computation in a Krylov sub-space based iterative solver framework. However, as the number of conductors in a system increases leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products present a time bottleneck, especially for ill-conditioned system matrices. In this work, an FPGA based hardware implementation is proposed to parallelize the iterative matrix solution for multiple RHS vectors in a low-rank compression based fast solver scheme. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple conductors in a Ball Grid Array (BGA) package. Speed-ups up to 13x over equivalent software implementation on an Intel Core i5 processor for dense matrix-vector products and 12x for QR compressed matrix-vector products is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board.
Resumo:
Eigenfunctions of integrable planar billiards are studied - in particular, the number of nodal domains, nu of the eigenfunctions with Dirichlet boundary conditions are considered. The billiards for which the time-independent Schrodinger equation (Helmholtz equation) is separable admit trivial expressions for the number of domains. Here, we discover that for all separable and nonseparable integrable billiards, nu satisfies certain difference equations. This has been possible because the eigenfunctions can be classified in families labelled by the same value of m mod kn, given a particular k, for a set of quantum numbers, m, n. Further, we observe that the patterns in a family are similar and the algebraic representation of the geometrical nodal patterns is found. Instances of this representation are explained in detail to understand the beauty of the patterns. This paper therefore presents a mathematical connection between integrable systems and difference equations. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .
Resumo:
LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.
Resumo:
We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Delta and the on-site Hubbard U. We find that for a finite Delta and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = U-AF via a first-order phase transition. For U smaller than U-AF the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U. We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature T-AF(U,Delta) or, equivalently, on decreasing U below U-AF(T,Delta)], within both methods, for weak to intermediate values of U/t. In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T, DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond U-AF. At U-N > U-AF, when the Neel temperature T-N for the effective Heisenberg model becomes lower than T, the AFM order is lost via a second-order transition. For U >> Delta, T-N similar to t(2)/U(1 - x(2)), where x = 2 Delta/U and thus T-N increases with increase in Delta/U. In the three-dimensional parameter space of (U/t, T/t, and Delta/t), as T increases, the surface of first-order transition at U-AF(T,Delta) and that of the second-order transition at U-N(T,Delta) approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points that separates the surfaces of first- and second-order phase transitions.
Resumo:
Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.
Resumo:
An exact single-product factorisation of the molecular wave function for the timedependent Schrodinger equation is investigated by using an ansatz involving a phasefactor. By using the Frenkel variational method, we obtain the Schrodinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.
Resumo:
A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.
Resumo:
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.
Resumo:
Standard approaches for ellipse fitting are based on the minimization of algebraic or geometric distance between the given data and a template ellipse. When the data are noisy and come from a partial ellipse, the state-of-the-art methods tend to produce biased ellipses. We rely on the sampling structure of the underlying signal and show that the x- and y-coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals, and that their parameters are estimable from partial data. We consider both uniform and nonuniform sampling scenarios in the presence of noise and show that the data can be modeled as a sum of random amplitude-modulated complex exponentials. A low-pass filter is used to suppress noise and approximate the data as a sum of weighted complex exponentials. The annihilating filter used in FRI approaches is applied to estimate the sampling interval in the closed form. We perform experiments on simulated and real data, and assess both objective and subjective performances in comparison with the state-of-the-art ellipse fitting methods. The proposed method produces ellipses with lesser bias. Furthermore, the mean-squared error is lesser by about 2 to 10 dB. We show the applications of ellipse fitting in iris images starting from partial edge contours, and to free-hand ellipses drawn on a touch-screen tablet.