394 resultados para ARTIFICIAL LESION FORMATION
Resumo:
An approach, starting with the bubble formation model of Khurana and Khumar, has been presented, which is found to be reasonably applicable to the formation of both bubbles and drops from single submerged nozzles. The model treats both the phenomena jointly as the formation of a dispersed phase entity resulting from injection, whose size depends upon operating parameters and physical properties.
Resumo:
Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.
Resumo:
Surface topography has been known to play an important role in the friction and transfer layer formation during sliding. In the present investigation, EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Pure Mg pins were scratched on these surfaces using an Inclined Scratch Tester to study the influence of directionality of surface grinding marks on coefficient of friction and transfer layer formation. Grinding angle (i.e., the angle between direction of scratch and grinding marks) was varied between 0 degrees and 90 degrees during the tests. Experiments were conducted under both dry and lubricated conditions. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the surface features that included the morphology of the transfer layer. It was observed that the average coefficient of friction and transfer layer formation depend primarily on the directionality of the grinding marks but were independent of surface roughness on the harder mating surface. In addition, a stick-slip phenomenon was observed, the amplitude of which depended both on the directionality of grinding marks and the surface roughness of the harder mating surface. The grinding angle effect on the coefficient of friction, which consists of adhesion and plowing components, was attributed to the variation of plowing component of friction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
A new soft-chemical transformation of layered perovskite oxides is described wherein K2O is sequentially extracted from the Ruddlesden-Popper (R-P) phase, K2La2Ti3O10 (I), yielding novel anion-deficient KLa2Ti3O9.5 (II) and La2Ti3O9 (III). The transformation occurs in topochemical reactions of the R-P phase I with PPh4Br and PBu4Br (Ph = phenyl; Bu = n-butyl). The mechanism involves the elimination of KBr accompanied by decomposition of PR4+ (R = phenyl or n-butyl) that extracts oxygen from the titanate. Analysis of the organic products of decomposition reveals formation of Ph3PO, Ph3P, and Ph-Ph for R = phenyl, and Bu3PO, Bu3P along with butane, butene, and octane for R = butyl. The inorganic oxides II and III crystallize in tetragonal structures (II: P4/mmm, a = 3.8335(1) angstrom, c = 14.334(1) angstrom; III: /4/ mmm, a = 3.8565(2) angstrom, c = 24.645(2) angstrom) that are related to the parent R-P phase. II is isotypic with the Dion-Jacobson phase, RbSr2Nb3O10, while III is a unique layered oxide consisting of charge-neutral La2Ti3O9 anion-deficient perovskite sheets stacked one over the other without interlayer cations. Interestingly, both II and III convert back to the parent R-P phase in a reaction with KNO3. While transformations of the R-P phases to other related layered/three-dimensional perovskite oxides in ion-exchange/metathesis/dehydration/reduction reactions are known, the simultaneous and reversible extraction of both cations and anions in the conversions K2La2Ti3O10 reversible arrow KLa2Ti3O9.5 reversible arrow La2Ti3O9 is reported here for the first time.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.
Resumo:
The numbers and mean radio luminosities of giant radio galaxies (GRGs) have been calculated for redshifts up to z = 0.6, assuming a sensitivity limit of 1 Jy at 1 GHz for the observations. The estimates are obtained with a model for the beam propagation, first through the hot gaseaous halo around the parent galaxy, and thereafter, through the even hotter but less dense intergalactic medium. The model is able to accurately reproduce the observed numbers and mean radio luminosities of GRGs at redshifts of less than 0.1, and it predicts that a somewhat larger number of GRGs should be found at redshifts of greater than 0.1.
Resumo:
On hydrogenation of the Laves phase SmFe2, an amorphous SmFe2H3.6 (a-SmFe2H3.6) alloy was formed between 400 K and 500 K. The amorphous nature of the alloy was confirmed by X-ray diffraction, transmission electron microscopy and thermal analysis. However, SmFe2 absorbed hydrogen in the crystal state below 350 K and decomposed into SmH2 and α-Fe above 550 K. The crystallization behaviour of a-SmFe2H3.6 was investigated by differential scanning calorimetry in combination with electron microscopy. Even after considerable hydrogen desorption (Image ) by an endothermic reaction on heating, the amorphous state was retained. Crystallization of a-SmFe2H3.6 took place in two stages. The first stage involved the precipitation of α-Fe in the amorphous matrix. The second stage involved the decomposition of the remaining amorphous phase into the equilibrium phases SmH2 and SmFe2.
Resumo:
The electronic structure of the insulating sodium tungsten bronze, Na0.025WO3, is investigated by high-resolution angle-resolved photoemission spectroscopy. We find that near-E-F states are localized due to the strong disorder arising from random distribution of Na+ ions in the WO3 lattice, which makes the system insulating. The temperature dependence of photoemission spectra provides direct evidence for polaron formation. The remnant Fermi surface of the insulator is found to be the replica of the real Fermi surface in the metallic system
Resumo:
For active contour modeling (ACM), we propose a novel self-organizing map (SOM)-based approach, called the batch-SOM (BSOM), that attempts to integrate the advantages of SOM- and snake-based ACMs in order to extract the desired contours from images. We employ feature points, in the form of ail edge-map (as obtained from a standard edge-detection operation), to guide the contour (as in the case of SOM-based ACMs) along with the gradient and intensity variations in a local region to ensure that the contour does not "leak" into the object boundary in case of faulty feature points (weak or broken edges). In contrast with the snake-based ACMs, however, we do not use an explicit energy functional (based on gradient or intensity) for controlling the contour movement. We extend the BSOM to handle extraction of contours of multiple objects, by splitting a single contour into as many subcontours as the objects in the image. The BSOM and its extended version are tested on synthetic binary and gray-level images with both single and multiple objects. We also demonstrate the efficacy of the BSOM on images of objects having both convex and nonconvex boundaries. The results demonstrate the superiority of the BSOM over others. Finally, we analyze the limitations of the BSOM.
Resumo:
We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.
Resumo:
Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.