93 resultados para ADHESIVE WEAR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stick-slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick-slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry sliding wear behavior of epoxy matrix syntactic foams filled with 20, 40 and 60 wt% fly ash cenosphere is reported based on response surface methodology. Empirical models are constructed and validated based on analysis of variance. Results show that syntactic foams have higher wear resistance than the matrix resin. Among the parameters studied, the applied normal load (F) had a prominent effect on wear rate, specific wear rate (w(s)) and coefficient of friction (mu). With increasing F, the wear rate increased, whereas ws and mu decreased. With increase in filler content, the wear rate and w(s) decreased, while the mu increased. With increase in sliding velocity as well as sliding distance, the wear rate and ws show decreasing trends. Microscopy revealed broken cenospheres forming debris and extensive deformation marks on the wear surface. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.