539 resultados para 4 ENDODONTIC SEALERS
Resumo:
Copper(II) complexes of quaternised poly(4-vinylpyridine) (PVP) of different degrees of quaternisation and copper content have been prepared by crosslinking the polymer with 1,2-dibromoethane in the presence of Cu2+ ion as template. The stability constant of the PVP---Cu(II) complexes is found to increase with the degree of crosslinking quaternisation of the resin, but the rate at which Cu2+ is adsorbed by the resin decreases. An optimum combination of both stability and rate can be achieved with a moderate degree (31%) of crosslinking. A kinetic study reveals that quaternisation increases significantly the catalytic activity of the complex for the oxidation of S2O2−3 by O2 compared with PVP----Cu(II) without quaternisation, but it deactivates the complex for the oxidation of both S3O2−6 and S4O2−6. The batch reactor oxidation kinetics at pH 2.16, where the rate is observed to be maximum, is well explained by the Langmuir—Hinshelwood model assuming the coordination of both O2 and thioanion to Cu(II) as a precursor to the oxidation reaction.
Resumo:
The title compound, C14H18ClNO3, adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups trans. In the crystal, inversion dimers linked by pairs of N-H center dot center dot center dot O hydrogen bonds are observed.
Resumo:
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra.
Resumo:
Heterometallic {3d-4f-5d} aggregates with formula [{LMe2Ni(H2O)Ln(H2O)4.5}2{W(CN)8}2]·15H2O, (LMe2 stands for N,N-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff-base ligand) with Ln = Gd, Tb, Dy, have been obtained by reacting bimetallic [LMe2Ni(H2O)2Ln(NO3)3] and Cs3{W(CN)8} in H2O. The hexanuclear complexes are organized in 1-D arrays by means of hydrogen bonds established between the solvent molecules coordinated to Ln and the CN ligands of an octacyanometallate moiety. The X-ray structure was solved for the Tb derivative. Magnetic behavior indicates ferromagnetic {W–Ni} and {Ni–Ln} interactions (JNiW = 18.5 cm-1, JNiGd = 1.85 cm-1) as well as ferromagnetic intermolecular interactions mediated by the H-bonds. Dynamic magnetic susceptibility studies reveal slow magnetic relaxation processes for the Tb and Dy derivatives, suggesting SMM type behavior for these compounds.
Resumo:
(I): M r = 258.34, triclinic, Pi, a = 9.810 (3), b=9.635(3), e=15.015(4)A, a=79.11(2), #= 102.38 (3), y = 107.76 (3) o, V= 1308.5 A 3, Z = 4, Din= 1.318 (3) (by flotation in KI solution), D x = 1.311 g cm -3, Cu Ka, 2 = 1.5418/~, g = 20-05 cm -1, F(000) = 544, T---- 293 K, R = 0.074 for 2663 reflections. (II): M r = 284.43, monoclinic, P2~/c, a= 17.029 (5), b=6.706 (5), c= 14.629 (4), t= 113.55 (2) ° , V=1531.4A 3, Z=4, Dm=1.230(5) (by flotation in KI solution), Dx= 1.234gem -3, Mo Ka, 2 = 0.7107 A, g = 1.63 cm-1; F(000) = 608, T= 293 K, R = 0.062 for 855 reflections. The orientation of the C=S chromophores in the crystal lattice and their reactivity in the crystalline state are discussed. The C--S bonds are much shorter than the normal bond length [1.605 (4) (I), 1.665 (8) A (II) cf. 1.71 A].
Resumo:
(I): Mr=274"39, orthorhombic, Pbca, a = 7.443 (1), b= 32.691 (3), c= 11.828 (2)A, V= 2877.98A 3, Z=8, Din= 1.216 (flotation in KI), D x = 1.266 g cm -3, /~(Cu Ka, 2 = 1.5418 A) = 17.55 cm -1, F(000) = li52.0, T= 293 K, R = 6.8%, 1378 significant reflections. (II): M r = 248.35, orthorhombic, P212~21, a = 5.873 (3), b = 13.677 (3), c = 15-668 (5) A, V = 1260.14 A 3, Z = 4, D,n = 1.297 (flotation in KI), Dx= 1.308 g cm -a, /t(CuKa, 2=1.5418 A) = 19.55 cm -~, F(000) = 520.0, T= 293 K, R = 6.9%, 751 significant reflections. Crystals of (I) and (II) undergo photo-oxidation in the crystallinestate. In (I) the dihedral angle between the phenyl rings of the biphenyl moiety is 46 (1) °. The C=S bond length is 1.611(5) A in (I) and 1.630 (9)/~ in (II). The correlation between molecular packing and reactivity is discussed.
Resumo:
Syntheses and structural characterization of Ni(II) chelates of a new series of symmetric and unsymmetric tetradentate linear ligands are described. Preparative routes involve either the direct reaction between a metal complex and arene diazonium diazonium salts or a simple metal incorporation into the independently synthesized ligands. Recent X-ray structure determination of 4,9-dimethyl-5,8-diazadodeca-4,8-diene-2,11-dione-3,10-di(4′-methyl phenyl) hydrazonatonickel(II) complex reveals the geometry around the Ni(II) to be very close to square planar. The expected distortion because of the disposition of bulky aromatic groups on the neighbouring nitrogens is minimized by their projection in the opposite directions from the plane. PMP, IR and electronic spectral data for the complexes are quite in agreement with this structure.
Resumo:
The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
Benzoate-4-hydroxylase from a soil pseudomonad was isolated and purified about 50-fold. Polyacrylamide gel electrophoresis of this enzyme preparation showed one major band and one minor band. The approximate molecular weight of the enzyme was found to be 120,000. Benzoate-4-hydroxylase was most active around pH 7.2. The enzyme showed requirements for tetrahydropteridine as the cofactor and molecular oxygen as the electron acceptor. NADPH, NADH, dithiothreitol, β-mercaptoethanol, and ascorbic acid when added alone to the reaction mixture did not support the hydroxylation reaction to any significant extent. However, when these compounds were added together with tetrahydropteridine, they stimulated the hydroxylation. This stimulation is probably due to the reduction of the oxidized pteridine back to the reduced form. This enzyme was activated by Fe2+ and benzoate. It was observed that benzoate-4-hydroxylase could catalyze the oxidation of NADPH in the presence of benzoate,p-aminobenzoate, p-nitrobenzoate, p-chlorobenzoate, and p-methylbenzoate, with only benzoate showing maximum hydroxylation. Inhibition studies with substrate analogs and their kinetic analysis revealed that the carboxyl group is involved in binding the substrate to the enzyme at the active center. The enzyme catalyzed the conversion of 1 mol of benzoate to 1 mol of p-hydroxybenzoate with the consumption of slightly more than 1 mol of NADPH and oxygen.
Resumo:
allo-4-Hydroxy-L-proline crystallizes from an aqueous solution as the dihydrate. The crystals are orthorhombic, space group P212121, with a=7.08 (2), b=22.13 (3), c= 5"20 (2) A,. The structure was solved by direct methods and refined by block-diagonal least squares. The final R for 733 observed reflexions is 0.054. The molecule exists as a zwitterion with hydroxyl and carboxyl groups cis to the pyrrolidine ring. The latter is puckered at the fl-carbon atom, which deviates by -0.54 A, from the best plane formed by the four remaining atoms. The molecules are held together by a network of hydrogen bonds, the water molecules playing a dominant role in the stability of the structure.
Resumo:
NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.
Resumo:
Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.