130 resultados para 149-898


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the test gas on the flow field around a 120degrees apex angle blunt cone has been investigated in a shock tunnel at a nominal Mach number of 5.75. The shock standoff distance around the blunt cone was measured by an electrical discharge technique using both carbon dioxide and air as test gases. The forebody laminar convective heat transfer to the blunt cone was measured with platinum thin-film sensors in both air and carbon dioxide environments. An increase of 10 to 15% in the measured heat transfer values was observed with carbon dioxide as the test gas in comparison to air. The measured thickness of the shock layer along the stagnation streamline was 3.57 +/- 0.17 mm in air and 3.29 +/- 0.26 mm in carbon dioxide. The computed thickness of the shock layer for air and carbon dioxide were 3.98 mm and 3.02 mm, respectively. The observed increase in the measured heat transfer rates in carbon dioxide compared to air was due to the higher density ratio across the bow shock wave and the reduced shock layer thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biphasic calcium phosphates have received considerable attention due to their optimum dissolution rate in the human body after implantation. These materials are composed of hydroxyapatite (HA) and resorbable tricalcium phosphate (TCP). In the present investigation, HA whiskers are reinforced into TCP to enhance the mechanical properties of this biphasic composite. Various amounts (30-50 wt%) HA whiskers are reinforced in TCP matrix. Microstructural characterization has been carried out using field-emission scanning electron microscope. Mechanical properties have been investigated by microindentation in a universal testing machine (UTM). As TCP is resorbable, it will dissolve in body fluid and there is a strong possibility for the faceted HA whiskers to interact with functional groups present in the body fluid surroundings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial LaNiO3 thin films have been grown on SrTiO3 and several other substrates by pulsed laser deposition. The films are observed to be metallic down to 15 K, and the temperature dependence of resistivity is similar to that of bulk LaNiO3. Epitaxial, c-axis oriented YBa2Cu3O7-x films with good superconducting properties have been grown on the LaNiO3 (100) films. I-V characteristics of the YBa2Cu3O7-x-LaNiO3 junction are linear, indicating ohmic contact between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The I-V characteristics of bulk As40Te60-xSex and As35Te65-xSex glasses have been studied with a current sweep of 0-18 mA-0, over a wide range of compositions (4 less than or equal to x less than or equal to 22). All the glasses studied showed a threshold electrical switching behaviour. The number of switching cycles withstood by the samples has been found to depend on the ON-state current. It is seen that the switching voltages increase with increase in selenium content. Further, the switching voltages are found to be almost independent of the thickness of the sample (d), in the range 0.18-0.3 mm. Also, the switching voltages and the number of switching cycles withstood by the samples are found to decrease with temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Six ternary copper(II) complexes of general formulation [CuLB] (1-6), where L is dianionic ONS-donor thiosemicarbazones derived from the condensation of salicylaldehyde with thiosemicarbazides and B is NN-donor heterocyclic bases like 2,2'-bipyridine, 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline, are prepared from a reaction of copper(II) acetate hydrate with the heterocyclic base (B) and the thiosemicarbazone (H2L) in MeOH, and structurally characterized by X-ray diffraction technique. Crystal structures of the complexes display a distorted square-pyramidal (4 + 1) coordination geometry having the ONS-donor thiosemicarbazone bonded at the basal plane. The chelating heterocyclic bases exhibit axial-equatorial mode of bonding. The complexes are one-electron paramagnetic and they show axial X-band EPR spectra in DMF-toluene glass at 77 K giving g(parallel to)(A(parallel to)) and g(perpendicular to) values of similar to2.2 (175 x 10(-4) cm(-1)) and similar to2.0 indicating a {d(x2-y2)}(1) ground state. The complexes show a d-d band near 570 nm and a charge transfer band near 400 nm in DMF. The complexes are redox active and exhibit a quasireversible Cu(II)-Cu(I) couple in DMF-0.1 M tetrabutylammonium perchlorate near 0.1 V vs. SCE. They are catalytically active in the oxidation of ascorbic acid in presence of dioxygen. The complexes with a CuN3OS coordination model the ascorbate oxidation property of dopamine beta-hydroxylase and peptidylglycine a-hydroxylating monooxygeanase. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial increase in competition compels design firms to develop new products at an increasingly rapid pace. This situation pressurizes engineering teams to develop better products and at the same time develop products faster [1]. Continuous innovation is a key factor to enable a company to generate profit on a continued basis, through the introduction of new products in the market – a prime intention for Product Lifecycle Management. Creativity, affecting a wide spectrum of business portfolios, is regarded as the crucial factor for designing products. A central goal of product development is to create products that are sufficiently novel and useful. This research focuses on the determination of novelty of engineering products. Determination of novelty is important for ascertaining the newness of a product, to decide on the patentability of the design, to compare designers' capability of solving problems and to ascertain the potential market of a product. Few attempts at measuring novelty is available in literature [2, 3, 4], but more in-depth research is required for assessing degree of novelty of products. This research aims to determine the novelty of a product by enabling a person to determine the degree of novelty in a product. A measure of novelty has been developed by which the degree of ''novelty'' of products can be ascertained. An empirical study has been conducted to determine the validity of this method for determining the 'novelty' of the products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Seebeck coefficient (S) of YBa2Cu3O7-δ was measured in the temperature range 450 – 1200 K in air and in pure oxygen in order to derive information on charge carrier concentration. The orthorhombic to tetragonal phase transition manifests as maxima in the variation of (dS/dT) with temperature. Seebeck coefficient in air decreases beyond ∼ 1130K corresponding to a value of δ = 0.73.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New 2-chloro-3-formyl quinoline oxime esters were synthesized by the reaction of 2-chloro-3-formyl quinoline oximes with various benzoyl chlorides in the presence of triethyl amine and dichloromethane at 0 degrees C. The DNA photo cleavage studies of some new oxime esters were investigated by neutral agarose gel electrophoresis at different concentrations (40 mu M and 80 mu M). Analysis of the cleavage products in agarose gel indicated that few of quinoline oxime esters (3d-i) converted into supercoiled pUC19 plasmid DNA to its nicked or linear form. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drag and lift coefficients for a viscous optimized Mach 6 conical waverider has been measured using an accelerometer force balance system in the IISc hypersonic shock tunnel. A rubber bush placed in between the waverider model and the steel sting ensures unrestrained motion to the model during shock tunnel testing (500 mu s). Two accelerometers mounted on the model are used to measure the model accelerations in the axial and normal directions. The measured value of lift to drag ratio at zero angle of incidence for the IISc conical waverider with viscous optimized leading edge is 2.149, which compares well with the value reported in the open literature (Anderson et al 1991) for similar class of waveriders designed for a flight Mach number of 6. The details of the experimental study along with illustrative numerical results are discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.