118 resultados para 145-887


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sn-Ag-Cu (SAC) solders are susceptible to appreciable microstructural coarsening during storage or service. This results in evolution of joint properties over time, and thereby influences the long-term reliability of microelectronic packages. Accurate prediction of this aging behavior is therefore critical for joint reliability predictions. Here, we study the precipitate coarsening behavior in two Sn-Ag-Cu (SAC) alloys, namely Sn-3.0Ag-0.5Cu and Sn-1.0Cu-0.5Cu, under different thermo-mechanical excursions, including isothermal aging at 150 degrees C for various lengths of time and thermo-mechanical cycling between -25 degrees C and 125 degrees C, with an imposed shear strain of similar to 19.6% per cycle, for different number of cycles. During isothermal aging and the thermo-mechanical cycling up to 200 cycles, Ag3Sn precipitates undergo rapid, monotonous coarsening. However, high number of thermo-mechanical cycling, usually between 200 and 600 cycles, causes dissolution and re-precipitation of precipitates, resulting in a fine and even distribution. Also, recrystallization of Sn-grains near precipitate clusters was observed during severe isothermal aging. Such responses are quite unusual for SAC solder alloys. In the regime of usual precipitate coarsening in these SAC alloys, an explicit parameter, which captures the thermo-mechanical history dependence of Ag3Sn particle size, was defined. Brief mechanistic description for the recrystallization of Sn grains during isothermal aging and reprecipitation of the Ag3Sn due to high number of thermo-mechanical cycles are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this paper are to study the effects of plastic anisotropy and evolution in crystallographic texture with deformation on the ductile fracture behaviour of polycrystalline solids. To this end, numerical simulations of multiple void growth and interaction ahead of a notch tip are performed under mode I, plane strain, small scale yielding conditions using two approaches. The first approach is based on the Hill yield theory, while the second employs crystal plasticity constitutive equations and a Taylor-type homogenization in order to represent the ductile polycrystalline solid. The initial textures pertaining to continuous cast Al-Mg AA5754 sheets in recrystallized and cold rolled conditions are considered. The former is nearly-isotropic, while the latter displays pronounced anisotropy. The results indicate distinct changes in texture in the ligaments bridging the voids ahead of the notch tip with increase in load level which gives rise to retardation in porosity evolution and increase in tearing resistance for both materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipes jonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n. comb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report ferromagnetic resonance (FMR) study on a grid formed with permalloy nanowires to understand the spin wave dynamics. The presence of two sets of magnetic nanowires perpendicular to each other in the same device enables better control over spin waves. The grid was fabricated using e-beam lithography followed by DC-Magnetron sputtering and liftoff technique. It has dimensions of 800 +/- 10 and 400 +/- 10 nm as periods along X and Y directions with permalloy wires of width 145 +/- 10 nm. FMR studies were done at X-band (9.4 GHz) with the field sweep up to 1 Tesla. The in-plane angular variation of resonant fields shows that there are two well separated modes present, indicating two uniaxial anisotropy axes which are perpendicular to each other. The variation in the intensities in the FMR signal w.r.t. the grid angle is used to describe the spin wave confinement in different regions of the grid. We also explained the asymmetry in the magnetic properties caused by the geometrical property of the rectangular grid and the origin for the peak splitting for the modes occurring at higher resonant fields. Micromagnetic simulations based on OOMMF with two dimensional periodic boundary conditions (2D-PBC) are used to support our experimental findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transverse magnetic field was used to fix the cathode spot of a low pressure mercury arc with liquid cathode It was noticed that such fixation causes consider-abledepression of the emission zone below the mercury level.This depression varies with the arc current and the magnetic field and is associated with an increase in the arc voltage drop. It indicates appreciable pressure in the emission zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called ``fast'') gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers (Fr) considered (0.05 a parts per thousand currency sign Fr a parts per thousand currency sign 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bent-core mesogens are an important class of thermotropic liquid crystals as they exhibit unusual properties as well as morphologies distinctly different from rodlike mesogens. Two bent-core mesogens with differing center rings namely benzene and thiophene are considered and investigated using high-resolution oriented solid state C-13 NMR method in their liquid crystalline phases. The mesogens exhibit different phase sequences with the benzene-based mesogen showing a B-1 phase, while the one based on thiophene showing nematic and smectic C phases. The 2-dimensional separated local field (2D-SLF) NMR method was used to obtain the C-13-H-1 dipolar couplings of carbons in the center ring as well as in the side-wing phenyl rings. Couplings, characteristic of the type of the center ring, that also provide orientational information on the molecule in the magnetic field were observed. Together with the dipolar couplings of the side-wing phenyl ring carbons from which the local order parameters of the different subunits of the core could be extracted, the bent angle of the mesogenic molecule could be obtained. Accordingly, for the benzene mesogen in its B-1 phase at 145 degrees C, the center ring methine C-13-H-1 dipolar couplings were found to be significantly larger (9.5-10.2 kHz) compared to those of the side-wing rings (1.6-2.1 kHz). From the local order parameter values of the center (0.68) as well as the side-wing rings (0.50), a bent-angle of 130.3 degrees for this mesogen was obtained. Interestingly, for the thiophene mesogen in its smectic C phase at 210 degrees C, the C-13-H-1 dipolar coupling of the center ring methine carbon (2.11 kHz) is smaller than those of the side-wing phenyl ring carbons (2.75-3.00 kHz) which is a consequence of the different structures of the thiophene and the benzene rings. These values correspond to local order parameters of 0.85 for the center thiophene ring and 0.76 for the first side-wing phenyl ring and a bent-angle of 149.2 degrees. Thus, the significant differences in the dipolar couplings and the order parameter values between different parts in the rigid core of the mesogens are a direct consequence of the nature of the center ring and the bent structure of the molecule. The present investigation thus highlights the ability of the C-13 2D-SLF technique to provide the geometry of the bent-core mesogens in a straightforward manner through the measurement of the C-13-H-1 dipolar couplings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sign changes of Fourier coefficients of various modular forms have been studied. In this paper, we analyze some sign change properties of Fourier coefficients of Hilbert modular forms, under the assumption that all the coefficients are real. The quantitative results on the number of sign changes in short intervals are also discussed. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a method to enhance both the sensitivity and bandwidth of in-plane capacitive micromachined accelerometers by using compliant mechanical amplifiers, and thus obviating the compromise between the sensitivity and bandwidth. Here, we compare one of the most sensitive single-axis capacitive accelerometers and another with large resonant frequency reported in the literature with the modified designs that include displacement-amplifying compliant mechanisms (DaCMs) occupying the same footprint and under identical conditions. We show that 62% improvement in sensitivity and 34% improvement in bandwidth in the former, and 27% and 25% in the latter can be achieved. Also presented here is a dual-axis accelerometer that uses a suspension that decouples and amplifies the displacements along the two in-plane orthogonal axes. The new design was microfabricated, packaged, and tested. The device is 25-mu m thick with the interfinger gap as large as 4 m. Despite the simplicity of the microfabrication process, the measured axial sensitivity (static) of about 0.58 V/g for both the axes was achieved with a cross-axis sensitivity of less than +/- 2%. The measured natural frequency along the two in-plane axes was 920 Hz. Displacement amplification of 6.2 was obtained using the DaCMs in the dual-axis accelerometer. 2013-0083]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of spurious solutions is a well-known limitation of the standard nodal finite element method when applied to electromagnetic problems. The two commonly used remedies that are used to address this problem are (i) The addition of a penalty term with the penalty factor based on the local dielectric constant, and which reduces to a Helmholtz form on homogeneous domains (regularized formulation); (ii) A formulation based on a vector and a scalar potential. Both these strategies have some shortcomings. The penalty method does not completely get rid of the spurious modes, and both methods are incapable of predicting singular eigenvalues in non-convex domains. Some non-zero spurious eigenvalues are also predicted by these methods on non-convex domains. In this work, we develop mixed finite element formulations which predict the eigenfrequencies (including their multiplicities) accurately, even for nonconvex domains. The main feature of the proposed mixed finite element formulation is that no ad-hoc terms are added to the formulation as in the penalty formulation, and the improvement is achieved purely by an appropriate choice of finite element spaces for the different variables. We show that the formulation works even for inhomogeneous domains where `double noding' is used to enforce the appropriate continuity requirements at an interface. For two-dimensional problems, the shape of the domain can be arbitrary, while for the three-dimensional ones, with our current formulation, only regular domains (which can be nonconvex) can be modeled. Since eigenfrequencies are modeled accurately, these elements also yield accurate results for driven problems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The India-Asia collision profoundly influenced the climate, topography and biodiversity of Asia, causing the formation of the biodiverse Himalayas. The species-rich gekkonid genus Cyrtodactylus is an ideal clade for exploring the biological impacts of the India-Asia collision, as previous phylogenetic hypotheses suggest basal divergences occurred within the Himalayas and Indo-Burma during the Eocene. To this end, we sampled for Cyrtodactylus across Indian areas of the Himalayas and Indo-Burma Hotspots and used three genes to reconstruct relationships and estimate divergence times. Basal divergences in Cyrtodactylus, Hemidactylus and the Palaearctic naked-toed geckos were simultaneous with or just preceded the start of the India-Asia collision. Diversification within Cyrtodactylus tracks the India-Asia collision and subsequent geological events. A number of geographically concordant clades are resolved within Indo-Burmese Cyrtodactylus. Our study reveals 17 divergent lineages that may represent undescribed species, underscoring the previously undocumented diversity of the region. The importance of rocky habitats for Cyrtodactylus indicates the Indo-Gangetic flood plains and the Garo-Rajmahal Gap are likely to have been important historical barriers for this group. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence-search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino-acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as Protein Blocks (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence-search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z-score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales-up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web-server that is freely available at http://www.bo-protscience.fr/forsa.