983 resultados para Editorials
Resumo:
Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)
Resumo:
High?quality Ag?doped YBa2Cu3O7?? thin films have been grown by laser ablation on R?plane ?1102? sapphire without any buffer layer. Thin films have been found to be highly c?axis oriented with Tc=90 K, transition width ?T?1 K, and transport Jc=1.2×106 A?cm?2 at 77 K in self?field conditions. The microwave surface resistance of these films measured on patterned microstrip resonators has been found to be 530 ?? at 10 GHz at 77 K which is the lowest reported on unbuffered sapphire. Improved in?plane epitaxy and reduced reaction rate between the substrate and the film caused due to Ag in the film are believed to be responsible for this greatly improved microwave surface resistance. © 1995 American Institute of Physics.
Resumo:
We show that meridional circulation can have a profound influence on dynamo models for the solar cycle. Motivated by the observed tilt angles of sunspot groups we assume that the generation of the poloidal field takes place near the surface, while a shear layer of radial differential rotation produces the toroidal field at the bottom of the convection zone. Both layers are coupled by a circulation with a poleward directed flow in the upper part and an equatorward flow in the deep layers of the convection zone. The circulation forces the toroidal field belts (which are responsible for the surface activity) to move equatorward. This leads to butterfly diagrams in qualitative agreement with the observations, even if the dynamo wave would propagate poleward in the absence of circulation. This result opens the possibility to construct models for the solar cycle which are based on observational data (tilt angles, differential rotation, and meridional circulation).
Resumo:
7-Methoxy-4-methylcoumarin undergoes a solid-state photo [2 + 2] cycloaddition upon UV irradiation to yield two photodimers. The formation of the minor product appears to be a direct consequence of the formation of the topochemically controlled dimer.
Resumo:
A regioselective reductive demethoxylation of dimethyl and mixed ketals, using sodium cyanoborohydride in the presence of a catalytic amount of tributylchlorostannane as Lewis acid in refluxing tert-butanol is described.
Resumo:
It is pointed out that the change in the oxidation state of Cu in YBa2CU3O7-x with increasing x vitiates the trend in the Cu(2p) satellite intensity and hence the Cu-O charge-transfer energy. When Y is partly replaced by Ca, however, the satellite intensity and T(c) decrease with the increase in Ca content or hole concentration, just as in other cuprates.
Resumo:
Magnetoresistance (MR) in bulk samples of LaMnO3 has been investigated by varying the Mn4+ content from 10 to 33 per cent by chemical means, without aliovalent doping. With the increase in Mn4+ content, the structure of LaMnO3 changes first from orthorhombic to rhombohedral and then to cubic and the material becomes increasingly ferromagnetic, exhibiting a resistivity maximum akin to an insulator-metal transition at T-Peak, just below the ferromagnetic T-c. The magnitude of MR is highest in the cubic sample (with 33% Mn4+) around the T-Peak, and negligible in the non-magnetic orthorhombic sample (12% Mn4+).
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.