138 resultados para yeast-to-hypha transition
Resumo:
Transport and magnetic properties of flux-grown Nd1−xPbxMnO3 single crystals (x=0.15–0.5) are studied in the temperature range 300–77 K and 280–2 K, respectively. Magnetization measurements with a superconducting quantum interference device confirm a paramagnetic to ferromagnetic transition around 110, 121, 150, 160, and 178 K for x=0.15, 0.2, 0.3, 0.4, and 0.5, respectively. Four probe resistivity measurements at low temperatures show a monotonic increase for x=0.15 which represents a ferromagnetic insulating (FMI) phase. For Nd0.8Pb0.2MnO3 there is a slope change present in the resistivity profile at 127 K where metal to insulator transition (MI) sets in. For x=0.3 this MI transition is more prominent. However, both these samples have FMI phase at low temperature. When the concentration of lead increases (x>0.3) the sample displays a clear insulator to metal transition with a low temperature ferromagnetic metallic phase. On the basis of these measurements we have predicted the phase diagram of Nd1−xPbxMnO3. Magnetization measurements by a vibration sample magnetometer point out the appreciable differences between zero field cooled and field cooled profiles below the ferromagnetic to paramagnetic transition temperature for all x. These are indicative of magnetic frustration.
Resumo:
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel salicylideneaniline type fluorescent organogelator based on a 3,4,5-(tri-dodecyloxy)benzoyl group immobilizes aromatic solvents. The resulting gels show enhancement in emission and thermochromic/non-photochromic behaviour during sol-to-gel transition.
Resumo:
Semiconducting chalcogenide glasses in the systems GeSe and GeSeTe with the addition of bismuth show unusual phenomena of p - to - n transition. Samples for characterization were prepared in bulk form by melt-quenching technique, with increasing Bi at. % to replace selenium. Photoluminescence (PL) spectroscopic studies on all the samples were carried out at 4.2K using an Ar-Ion laser for illuminating the samples. The laser power used was 200mw. Both the systems show a decrease in the intensity of PL signal with increasing Bi content. This interesting behavior is discussed on the basis of a charged defect model for chalcogenide glasses, proposed by Mott, Davis and Street (MDS). The effect of bismuth addition on these charged defects is also discussed to explain the carrier type reversal.
Resumo:
Emerging evidence suggests that cancers arise in stem/progenitor cells. Yet, the requirements for transformation of these primitive cells remains poorly understood. In this study, we have exploited the `mammosphere' system that selects for primitive mammary stem/progenitor cells to explore their potential and requirements for transformation. Introduction of Simian Virus 40 Early Region and hTERT into mammosphere-derived cells led to the generation of NBLE, an immortalized mammary epithelial cell line. The NBLEs largely comprised of bi-potent progenitors with long-term self-renewal and multi-lineage differentiation potential. Clonal and karyotype analyses revealed the existence of heterogeneous population within NBLEs with varied proliferation, differentiation and sphere-forming potential. Significantly, injection of NBLEs into immunocompromised mice resulted in the generation of invasive ductal adenocarcinomas. Further, these cells harbored a sub-population of CD44(+)/CD24(-) fraction that alone had sphere- and tumor-initiating potential and resembled the breast cancer stem cell gene signature. Interestingly, prolonged in vitro culturing led to their further enrichment. The NBLE cells also showed increased expression of stemness and epithelial to mesenchymal transition markers, deregulated self-renewal pathways, activated DNA-damage response and cancer-associated chromosomal aberrations-all of which are likely to have contributed to their tumorigenic transformation. Thus, unlike previous in vitro transformation studies that used adherent, more differentiated human mammary epithelial cells our study demonstrates that the mammosphere-derived, less-differentiated cells undergo tumorigenic conversion with only two genetic elements, without requiring oncogenic Ras. Moreover, the striking phenotypic and molecular resemblance of the NBLE-generated tumors with naturally arising breast adenocarcinomas supports the notion of a primitive breast cell as the origin for this subtype of breast cancer. Finally, the NBLEs represent a heterogeneous population of cells with striking plasticity, capable of differentiation, self-renewal and tumorigenicity, thus offering a unique model system to study the molecular mechanisms involved with these processes. Oncogene (2012) 31, 1896-1909; doi:10.1038/onc.2011.378; published online 29 August 2011
Resumo:
The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2 -aEuro parts per thousand 4 minutes, 4 -aEuro parts per thousand 6 minutes, 6 -aEuro parts per thousand 15 minutes, and beyond 15 minutes. We detect the presence of long-period oscillations with periods between 15 and 30 minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.
Resumo:
Ag-Ni films were electrodeposited over a Cu substrate. Structural characterization revealed a fibrous microstructure with an amorphous structure for the as-deposited film. Isothermal annealing at 400 degrees C of the film inside transmission electron microscope led to amorphous-to-crystalline transition along with the evolution of nano-sized particles in the microstructure. The crystalline phase was Ni-Ag solid solution. The relative volume fraction of the nano-sized particles increased gradually with time. There was however no detectable decomposition of solid solution phase till about 4 h of annealing. Beyond 4 h phase separation initiated and pure Ag and Ni phases formed in the film. This study provides a methodology by which microstructural engineering of as-electrodeposited amorphous Ag-Ni films can be conducted to isolate a particular microstructure in order to tap specific potentially usable functionalities. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.
Resumo:
N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.
Resumo:
Selective detection of nitro-aromatic compounds (NACs) at nanomolar concentration is achieved for the first time in multiple media including water, micelles or in organogels as well as using test strips. Mechanism of interaction of NACs with highly fluorescent p-phenylenevinylene-based molecules has been described as the electron transfer phenomenon from the electron-rich chromophoric probe to the electron deficient NACs. The selectivity in sensing is guided by the pK(a) of the probes as well as the NACs under consideration. TNP-induced selective gel-to-sol transition in THF medium is also observed through the reorganization of molecular self-assembly and the portable test trips are made successfully for rapid on-site detection purpose.
Resumo:
Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
Resumo:
Gd1.96-xYxEu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400 degrees C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrer's and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of D-5(0) —> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The structural and magnetic study of the pseudo-binary multiferroic (1 x)BiFeO3 (x)SrTiO3 has been investigated as a function of composition and temperature. In contrary to the previous studies, detailed examination revealed that the reported anomaly in the magnetization at x-0.30 does not occur at the composition induced rhombohedral-cubic phase boundary, but within the rhombohedral phase itself. The rhombohedral to cubic transition occurs at x > 0.4. Evidence of magneto-elastic coupling near the Neel temperature and nucleation-growth mode of the rhombohedral-cubic transformation, with both the phases coexisting over a range of temperature was found. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The photoluminescence (PL) of ZnO is shown to be dependent on the excitation intensity (EI) of the laser, and the substantial shift observed in the band to band transition is attributed to the heating effect. In order to understand this phenomenon in detail, we investigate the EI dependent PL of various ZnO samples systematically from liquid nitrogen (LN) to room temperature by varying the laser power. Some of the samples exhibit substantial red shift in the band to band transition with increasing EI even in LN environment, negligible effect is observed for others. Hence, our results strongly suggest that the EI dependent PL is not a characteristic of all ZnO samples. This indicates that laser-induced heating effect is not the dominant factor that governs the shifts in the PL spectra. Rather, the defect level excitation accounts for such observation. (C) 2014 AIP Publishing LLC.