156 resultados para wool powders


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tialite, beta-Al2TiO5, a low expansion material, has been synthesised by the combustion of corresponding metal nitrates and carbohydrazide (CH) or urea redox mixtures at 500-degrees-C. As prepared powders contained tialite, rutile, and corundum in the mole ratios of 50:25:25 (CH) and 20:40:40 (urea). The combustion derived powders, when calcined 30 min at 1300-degrees-C, gave single phase beta-tialite having a surface area of 20-25 m2 g-1 and a particle size of 0.79-1.03 mum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolution of barium ion from aqueous suspensions of commercial nano-sized barium titanate powders (BaTiO3) has been studied at various pH values, solids loading, different time intervals and different electrolyte concentrations. Zeta potential measurements at various pH values and Fourier transform infrared spectroscopy study were also carried out to know the surface behaviour. Dissolution of Ba2+ depends on the suspension pH and stirring time period. The iso-electric points were found at 3.4 and 12.2 for as-received BaTiO3 powder and 2.3 for the leached BaTiO3. The Ba2+-leached BaTiO3 suspension retards further leaching of Ba2+ ions at different pH values, which favours the achievement of stable suspension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferromagnetic resonance spectra of La1-xCaxMnO3 powders (0.1 less than or equal to x 0.9) have been investigated over a range of temperatures. The spectra could be fitted to a sum of two Lorentzians for all the compositions. The intense line with a nearly constant g shows a linear decrease in linewidth with increase in temperature, while the weaker line with a variable g shows a maximum in linewidth in the T-c region. The latter is also associated with a g(eff) which depends on the composition. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fine-particle NASICON family of materials, MZr2P3O12(where M = Na, K, ½Ca and ¼Zr) and NbZrP3O12, have been prepared by the combustion of aqueous heterogeneous mixtures of stoichiometric amounts of metal nitrate, zirconyl nitrate, niobium phosphate, diammonium hydrogen phosphate, ammonium perchlorate and carbohydrazide (CH) at 400 °C. The formation of NASICON materials was confirmed by powder X-ray diffraction (XRD), IR, solid-state (31P) NMR spectroscopy and thermal expansion coefficient measurements. The combustion-synthesized NASICON powders have an average agglomerate size of 9�13 µm with a specific surface area varying from 8 to 28 m2 g�1. The powders pelletized and sintered in the range 1100�1200 °C for 5 h achieved 95�97% theoretical density and showed fine-grain microstructure. The coefficient of thermal expansion of a sintered compact was measured up to 500 °C and ranged from �1.5 × 10�6°C�1 to 1.0 × 10�6°C�1 depending on the composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mullite-zirconia composite powders were prepared by the combustion of an aqueous heterogeneous redox mixture consisting of Al(NO3)(3), Zr(NO3)(4)/ZrO(NO3)(2), silica fume and urea/diformyl hydrazine at 500 degrees C. X-ray diffraction data showed that a large amount of tetragonal zirconia existed in the composite powders in spite of high temperature calcination. Milled composite powders showed enhanced densification compared to the unmilled powders and the microstructure of the sintered (1600 degrees C) compacts showed the presence of spherical zirconia grains in intergranular positions along with elongated mullite grains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanometre-sized powders of SrTiO3 were prepared at 70-100 degrees C by the wet-chemical method of gel to crystallite (G-C) conversion. The crystallite sizes obtained were in the range 5-13 nm, as estimated by transmission electron microscopy (TEM) studies. The photocatalytic activities of these powders in the mineralization of phenol were evaluated in comparison with Degussa P25 (TiO2). The maximum photocatalytic activity was observed for powders annealed in the range 1100-1300 degrees C. The optical spectra of the particle suspensions in water showed broadened absorption around the band gap region, together with the appearance of an absorption maximum in the UV region. The effect of inorganic oxidizing species as electron scavengers on the rate of the photocatalytic degradation of phenol was studied. The influence of bulk and surface defects, which participate in the charge transfer process during photocatalysis, was investigated systematically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanosized powders of TiO2 (anatase) were prepared by the hydrothermal method, acid-medium hydrolysis or by vacuum freeze-drying of sols, and annealing at temperatures <700-degrees-C. Photocatalytic activities of these powders in the mineralization of phenol, were evaluated in comparison to that of Degussa P25. Kinetic data indicated that surface hydroxylation had a retarding effect on the degradation of phenol. Formation of stable peroxotitanium species were observed on hydroxylated powders, whereas only V(Ti)-O- hole trap centres were detected by EPR on the heat treated samples. The data supports direct hole oxidation of the substrate preadsorbed on the photocatalyst, which is otherwise blocked by surface hydroxyls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After briefly outlining the recent developments in hybrid rockets, the work carried out by the author on self-igniting (hypergolic) solid fuel-liquid oxidiser systems has been reviewed. A major aspect relates to the solid derivatives of hydrazines, which have been conceived as fuels for hybrid rockets. Many of these N-N bonded compounds ignite readily, with very short ignition delays, on coming into contact with liquid oxidisers, like HNO3 and N2O4. The ignition characteristics have been examined as a function of the nature of the functional group in the fuel molecule, in an attempt to establish a basis for the hypergolic ignition in terms of chemical reactivity of the fuel-oxidiser combination. Important chemical reactions occurring in the pre-ignition stage have been identified by examining the quenched reaction products. Hybrid systems exhibiting synergistic hypergolicity in the presence of metal powders have been investigated. An estimation of the rocket performance parameters, experimental determination of the heats of combustion in HNO3, thermal decomposition characteristics, temperature profile by thin film thermometry and and product identification by the rapid scan FT-IR, are among the other relevant studies made on these systems. A significant recent development has been the synthesis of new N-N bonded viscous binders, capable of retaining the hypergolicity of the fuel powders embedded therein as well as providing the required mechanical strength to the grain. Several of these resins have been characterised. Metallised fuel composites of these resins having high loading of magnesium are found to have short ignition delays and high performance parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured ceria-zirconia solid solutions (Ce1 − xZrxO2, X = 0 to 0.9) have been synthesized by a single step solution combustion process using cerous nitrate, zirconyl nitrate and oxalyl dihydrazide (ODH) / carbohydrazide (CH). The as-synthesized powders show extensive XRD line broadening and the crystallite sizes calculated from the XRD line broadening are in the nanometer range (6–11 nm). The combustion derived ceria zirconia solid solutions have high surface area in the range of 36–120 m2/g. Calcination of Ce1 −xZrxO2 at 1350 °C showed three distinct solid solution regions: single phase cubic (x ≤ 0.2), biphasic cubic-tetragonal (0.2 < x Image .8) and tetragonal (x > 0.8). When x ≥ 0.9, the metastable tetragonal phase formed transforms to monoclinic phase on cooling after calcination above 1100 °C. The homogeneity of Ce1 − xZrxO2 has been confirmed by EDAX analysis. The Temperature Programmed Reduction (TPR) measurement of Ce0.5Zr0.5O2 was carried out with H2 and the TPR profile showed two water formation peaks corresponding to the utilization of surface and bulk oxygen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of calcium hydroxyapatite Ca-10(PO4)(6)(OH)(2) ceramic powders by a solid state reaction between commercially available tricalcium phosphate and calcium hydroxide powders has been attempted in the range 700-1000 degrees C. Reaction of tricalcium phosphate and calcium hydroxide in 3:2 molar ratio at 1000 degrees C leads to the formation of pure calcium hydroxyapatite phase. The sample has been characterised by XRD and IR spectral studies. The compacted powder is sintered to 93% of theoretical density when fired in air at 1300 degrees C for 2 hours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nebulized spray pyrolysis of metal-organic precursors in methanol solution has been employed to prepare powders of TiO2, ZrO2 and PbZr0.5Ti0.5O3 (PZT). This process ensures complete decomposition of the precursors at relatively low temperatures. The particles have been examined by scanning and transmission electron microscopy as well as X-ray diffraction. As prepared, the particles are hollow agglomerates of diameter 0.1-1.6 mu m, but after heating to higher temperatures the ultimate size of the particles comprising the agglomerates are considerably smaller (0.1 mu m or less in diameter) and crystalline.