200 resultados para weekly self-scheduling
Resumo:
Extended self-similarity (ESS), a procedure that remarkably extends the range of scaling for structure functions in Navier-Stokes turbulence and thus allows improved determination of intermittency exponents, has never been fully explained. We show that ESS applies to Burgers turbulence at high Reynolds numbers and we give the theoretical explanation of the numerically observed improved scaling at both the IR and UV end, in total a gain of about three quarters of a decade: there is a reduction of subdominant contributions to scaling when going from the standard structure function representation to the ESS representation. We conjecture that a similar situation holds for three-dimensional incompressible turbulence and suggest ways of capturing subdominant contributions to scaling.
Resumo:
In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.
Resumo:
A series of 2′-5′-oligoguanylic acids are prepared by reacting G(cyclic)p with takadiastase T1 ribonuclease and separating the products chromatographically. The 3′-5′-oligoguanylic acids are obtained by separating the products of alkaline degradation of 3′-5′-poly(G). The optical rotatory dispersion and hypochromism of both 2′-5′- and 3′-5′-oligoguanylic acids are studied at two different pH. The optical rotatory dispersion spectrum of 2′-5′-GpG is significantly different from that of 3′-5′-GpG. The magnitude of rotation of the long-wavelength peak of 2′-5′-GpG is larger than that of 3′-5′-GpG. This finding contradicts the explanation that the extra stability and more intense circular dichroism band of other 3′-5′-dinucleoside monophosphates is due to H-bond formation between 2′-OH and either the base or the phosphate oxygen. The end phosphate group has a marked effect on the spectrum of GpG between 230 and 250 mμ. In addition the optical rotatory dispersion spectra of 2′-5′ exhibit strong pH, temperature, and solvent dependence between 230 and 250 mμ. ΔH and AS for order ⇌ disorder transition is estimated to be 9.7 kcal/mole and 35.2 eu, respectively. The optical rotatory dispersion spectra of guanine-rich oligoribonucleotides, GpGpC, GpGpU, GpGpGpC, and GpGpGpU are compared to the calculated optical rotatory dispersion from the semiempirical expression of Cantor and Tinoco, using measured optical rotatory dispersion of dimers. Contrary to previous studies, agreement is found not at all satisfactory. However, optical rotatory dispersion of 3′-5′-GpGpGpC and GpGpGpU can be estimated from the semiempirical expression, if a next-nearest interaction parameter is introduced empirically. Such interaction parameter can be calculated from the measured properties of trinucleotide sequences like GpGpG, GpGpC, and GpGpU, assuming that only the nearest-neighbor interaction is important. The optical rotatory dispersion of single-stranded poly(G) is also predicted. The importance of syn-anti equilibrium and next-nearest-neighbor interaction in oligoguanylic acids is suggested as a probable explanation.
Resumo:
In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.
Resumo:
By observing mergers of compact objects, future gravity wave experiments would measure the luminosity distance to a large number of sources to a high precision but not their redshifts. Given the directional sensitivity of an experiment, a fraction of such sources (gold plated) can be identified optically as single objects in the direction of the source. We show that if an approximate distance-redshift relation is known then it is possible to statistically resolve those sources that have multiple galaxies in the beam. We study the feasibility of using gold plated sources to iteratively resolve the unresolved sources, obtain the self-calibrated best possible distance-redshift relation and provide an analytical expression for the accuracy achievable. We derive the lower limit on the total number of sources that is needed to achieve this accuracy through self-calibration. We show that this limit depends exponentially on the beam width and give estimates for various experimental parameters representative of future gravitational wave experiments DECIGO and BBO.
Resumo:
Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
Utilization bounds for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling are known and well understood for uniprocessor systems. In this paper, we derive limits on similar bounds for the multiprocessor case, when the individual processors need not be identical. Tasks are partitioned among the processors and RM scheduling is assumed to be the policy used in individual processors. A minimum limit on the bounds for a 'greedy' class of algorithms is given and proved, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm which allocates tasks in decreasing order of utilization factors. Knowledge of such bounds allows us to carry out very fast schedulability tests although we are constrained by the fact that the tests are sufficient but not necessary to ensure schedulability.
Resumo:
In this paper, we present self assessment schemes (SAS) for multiple agents performing a search mission on an unknown terrain. The agents are subjected to limited communication and sensor ranges. The agents communicate and coordinate with their neighbours to arrive at route decisions. The self assessment schemes proposed here have very low communication and computational overhead. The SAS also has attractive features like scalability to large number of agents and fast decision-making capability. SAS can be used with partial or complete information sharing schemes during the search mission. We validate the performance of SAS using simulation on a large search space consisting of 100 agents with different information structures and self assessment schemes. We also compare the results obtained using SAS with that of a previously proposed negotiation scheme. The simulation results show that the SAS is scalable to large number of agents and can perform as good as the negotiation schemes with reduced communication requirement (almost 20% of that required for negotiation).
Resumo:
The aim of this study is to obtain the fracture characteristics of low and medium compressive strength self consolidating concrete (SCC) for notched and un-notched plain concrete beams by using work of fracture G(F) and size effect model G(f) methods and comparing them with those of normal concrete and high performance concrete. The results show that; (i) with an increase in compressive strength, G(F) increases and G(f) decreases; (ii) with an increase in depth of beam, the decrease in nominal stress of notched beam is more when compared with that of a notchless beam.
Resumo:
A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.
Resumo:
A Pd-6 molecular cage [{(tmen)Pd}(6)(bpy)(3)(tma)2)](NO3)(6) [1; where tmen = N,N,N,N-tetramethylethylene diamine, bpy = 4,4'-bipyridyl,and H(3)tma = trimesic acid] was prepared via the template-free three-component seff-assembly of a cis-blocked palladium(II) acceptorin combination with a tricarboxylate and a dipyridyl donor. Complex 1 represents the first example of a 3D palladium(II) cage of defined shape incorporating anionic and neutral linkers. Guest-induced exclusive formation of this cage was also monitored by an NMR study.
Resumo:
We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].