282 resultados para water ingestion
Resumo:
We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.
Resumo:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time
Resumo:
We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.
Resumo:
A differential temperature controller is incorporated in a solar water heating system to study the influence of its set points on system performance. The effectiveness of the controller set points DeltaT ON and DeltaT OFF on the pump cycling and energy collection has been studied experimentally and the results are presented in this paper.
Resumo:
Ultrafine powders of extra pure Ti1−xSnxO2, where o < x < 1, prepared by the hydrothermal method are pale yellow in color. They show photocatalytic activity after platinization, in the visible light (420–550 nm) for H2-production from aqueous solutions containing sacrificial donors such as hypophosphite. The spectral sensitization is shown to be due to peroxotitanium species in the rutile-type structure. Peroxide ion, O22−, arises from the dimerization of O−, the hole centres, produced during the disproportionative decomposition of residual hydroxyls: OH− = O− + H. Higher OH contents in TixSnxO2 is due to the amphoteric chemistry of oxocompounds of tin.
Acoustic emission technique for leak detection in an end shield of a pressurised heavy water reactor
Resumo:
This paper discusses a successful application of the Acoustic Emission Technique (AET) for the detection and location of leak paths present on an inaccessible side of an end shield of a Pressurised Heavy Water Reactor (PHWR). The methodology was based on the fact that air- and water-leak AE signals have different characteristic features. Baseline data was generated from a sound end shield of a PHWR for characterising the background noise. A mock-up end shield system with saw-cut leak paths was used to verify the validity of the methodology. It was found that air-leak signals under pressurisation (as low as 3 psi) could be detected by frequency domain analysis. Signals due to air leaks from various locations of defective end shield were acquired and analysed. It was possible to detect and locate leak paths. The presence of detected leak paths was further confirmed by an alternative test.
Resumo:
A simplified perturbational analysis is employed, together with the application of Green's theorem, to determine the first-order corrections to the reflection and transmission coefficients in the problem of diffraction of surface water waves by a nearly vertical barrier in two basically important cases: (i) when the barrier is partially immersed and (ii) when the barrier is completely submerged. The present analysis produces the desired results fairly easily and relatively quickly as compared with the known integral equation approach to this class of diffraction problems.
Resumo:
Tank irrigation systems in the semiarid regions of India are discussed in this paper. To optimize the grain yield of rice, it is essential to start the agricultural operations in the second week of July so that favorable climatic conditions will prevail during flowering and yield formation stages. Because of low inflow during the initial few weeks of the crop season, often farmers are forced to delay planting until sufficient sowing rain and inflow have occurred or to adopt deficit irrigation during this period. The delayed start affects the grain yield, but will lead to an improved irrigation efficiency. A delayed start of agricultural operations with increased irrigation efficiency leads to the energy resources becoming critical during the peak requirement week, particularly those of female labor and animal power. This necessitates augmenting these resources during weeks of their peak use, either by reorganizing the traditional methods of cultivation or by importing from outside the system.
Resumo:
Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.