127 resultados para transmission lines
Resumo:
This paper describes a bi-directional switch commutation strategy for a resonant matrix converter loaded with a contactless energy transmission system. Due to the different application compared to classical 3 phase to 3 phase matrix converters supplying induction machines a new investigation of possible commutation principles is necessary. The paper therefore compares the full bridge series-resonant converter with the 3 phase to 2 phase matrix converter. From the commutation of the full bridge series-resonant converter, conditions for the bi-directional switch commutation are derived. One of the main benefits of the derived strategy is the minimization of commutation steps, which is independent from the load current sign.
Resumo:
In this article, theoretical and the experimental studies are reported on the adaptive control of vibration transmission in a strut system subjected to a longitudinal pulse train excitation. In the control scheme, a magneto-strictive actuator is employed at the downstream transmission point in the secondary path. The actuator dynamics is taken into account. The system boundary parameters are first estimated off-line, and later employed to simulate the system dynamics. A Delayed-X Filtered-E spectral algorithm is proposed and implemented in real time. The underlying mechanics based filter construction allows for the time varying system dynamics to be taken into account. This work should be of interest for active control of vibration and noise transmission in helicopter gearbox support struts and other systems.
Resumo:
The tie lines between (CoXMg1−X)O solid solution with rock salt structure and orthosilicate solid solution (CoYMg1−Y)-Si0.5O2, and between orthosilicate and metasilicate (CoZMg1-Z)SiO3 crystalline solutions, have been determined experimentally at 1373 K. The compositions of coexisting phases have been determined by electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples. The metasilicate solid solution exists only for 0 > Z > 0.213. The activity of CoO in the rock salt solid solution was determined as a function of composition and temperature in the range of 1023 to 1373 K using a solid-state galvanic cell: Pt, (CoXMg1−X)O+Co|(Y2O3)ZrO2|Co+CoO, Pt The free energy of mixing of (CoXMg1−X)O crystalline solution can be expressed by the equation ΔGE=X(1 −X)[(6048 − 2.146T)X+ (8745 − 3.09T)(1 −X)] J·mol−1 The thermodynamic data for the rock salt phase is combined with information on interphase partitioning of Co and Mg to generate the mixing properties for the ortho- and metasilicate solid solutions. For the orthosilicate solution (CoYMg1 −Y)Si0.5O2 at 1373 K, the excess Gibbs free energy of mixing is given by the relation ΔGE=Y(1 −Y)[2805Y+ 3261(1 −Y)] J·mol−1 For the metasilicate solution (CoZMg1 −Z)SiO3 at the same temperature, the excess free energy can be expressed by the relation ΔGE=Z(1 −Z)[2570Z+ 3627(1 −Z)] J·mol−1
Resumo:
A second order transfer function with two poles and two zeros exhibits a step response characterized by a sudden rise to the steady state value, followed by oscillations around this steady state. With proper choice of the coefficients, it is possible to obtain transfer functions suitable for pulse transmission purposes.
Resumo:
A set of formulas is derived from general circuit constants which facilitates formation of the impedance matrix of a power system by the bus-impedance method. The errors associated with the lumpedparameter representation of a transmission line are thereby eliminated. The formulas are valid for short lines also, if the relevant general circuit constants are employed. The mutual impedance between the added line and the existing system is not considered, but the approach suggested can well be extended to it.
Resumo:
Bypass operation with the aid of a special bypass valve is an important part of present-day schemes of protection for h.v. d.c. transmission systems. In this paper, the possibility of using two valves connected to any phase in the bridge convertor for the purpose of bypass operation is studied. The scheme is based on the use of logic circuits in conjunction with modified methods of fault detection. Analysis of the faults in a d.c. transmission system is carried out with the object of determining the requirements of such a logic-circuit control system. An outline of the scheme for the logic-circuit control of the bypass operation for both rectifier and invertor bridges is then given. Finally, conclusions are drawn regarding the advantages of such a system, which include reduction in the number of valves, prevention of severe faults and fast clearance of faults, in addition to the immediate location of the fault and its nature.
Resumo:
A cationic amphiphile, cholest-5en-3 beta-oxyethyl pyridinium bromide (PY(+)-Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+)-Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GRPY(+)-Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmCGRPY(+)-Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+)-Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC ribbons in the composite suspensions. Atomic force microscopy indicates the presence of extended structures of GRPY(+)-Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmCGRPY(+)-Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmCGRPY(+)-Chol in delivering the drug to the cells, compared to the suspensions devoid of GR.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.