92 resultados para symbols.
Resumo:
For a family of Space-Time Block Codes (STBCs) C-1, C-2,..., with increasing number of transmit antennas N-i, with rates R-i complex symbols per channel use, i = 1, 2,..., we introduce the notion of asymptotic normalized rate which we define as lim(i ->infinity) R-i/N-i, and we say that a family of STBCs is asymptotically-good if its asymptotic normalized rate is non-zero, i. e., when the rate scales as a non-zero fraction of the number of transmit antennas. An STBC C is said to be g-group decodable, g >= 2, if the information symbols encoded by it can be partitioned into g groups, such that each group of symbols can be ML decoded independently of the others. In this paper we construct full-diversity g-group decodable codes with rates greater than one complex symbol per channel use for all g >= 2. Specifically, we construct delay-optimal, g-group decodable codes for number of transmit antennas N-t that are a multiple of g2left perpendicular(g-1/2)right perpendicular with rate N-t/g2(g-1) + g(2)-g/2N(t). Using these new codes as building blocks, we then construct non-delay-optimal g-group decodable codes with rate roughly g times that of the delay-optimal codes, for number of antennas N-t that are a multiple of 2left perpendicular(g-1/2)right perpendicular, with delay gN(t) and rate Nt/2(g-1) + g-1/2N(t). For each g >= 2, the new delay-optimal and non-delay- optimal families of STBCs are both asymptotically-good, with the latter family having the largest asymptotic normalized rates among all known families of multigroup decodable codes with delay T <= gN(t). Also, for g >= 3, these are the first instances of g-group decodable codes with rates greater than 1 reported in the literature.
Resumo:
An n-length block code C is said to be r-query locally correctable, if for any codeword x ∈ C, one can probabilistically recover any one of the n coordinates of the codeword x by querying at most r coordinates of a possibly corrupted version of x. It is known that linear codes whose duals contain 2-designs are locally correctable. In this article, we consider linear codes whose duals contain t-designs for larger t. It is shown here that for such codes, for a given number of queries r, under linear decoding, one can, in general, handle a larger number of corrupted bits. We exhibit to our knowledge, for the first time, a finite length code, whose dual contains 4-designs, which can tolerate a fraction of up to 0.567/r corrupted symbols as against a maximum of 0.5/r in prior constructions. We also present an upper bound that shows that 0.567 is the best possible for this code length and query complexity over this symbol alphabet thereby establishing optimality of this code in this respect. A second result in the article is a finite-length bound which relates the number of queries r and the fraction of errors that can be tolerated, for a locally correctable code that employs a randomized algorithm in which each instance of the algorithm involves t-error correction.
Resumo:
In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.
Resumo:
In this article, we aim at reducing the error rate of the online Tamil symbol recognition system by employing multiple experts to reevaluate certain decisions of the primary support vector machine classifier. Motivated by the relatively high percentage of occurrence of base consonants in the script, a reevaluation technique has been proposed to correct any ambiguities arising in the base consonants. Secondly, a dynamic time-warping method is proposed to automatically extract the discriminative regions for each set of confused characters. Class-specific features derived from these regions aid in reducing the degree of confusion. Thirdly, statistics of specific features are proposed for resolving any confusions in vowel modifiers. The reevaluation approaches are tested on two databases (a) the isolated Tamil symbols in the IWFHR test set, and (b) the symbols segmented from a set of 10,000 Tamil words. The recognition rate of the isolated test symbols of the IWFHR database improves by 1.9 %. For the word database, the incorporation of the reevaluation step improves the symbol recognition rate by 3.5 % (from 88.4 to 91.9 %). This, in turn, boosts the word recognition rate by 11.9 % (from 65.0 to 76.9 %). The reduction in the word error rate has been achieved using a generic approach, without the incorporation of language models.
Resumo:
It is well known that the impulse response of a wide-band wireless channel is approximately sparse, in the sense that it has a small number of significant components relative to the channel delay spread. In this paper, we consider the estimation of the unknown channel coefficients and its support in OFDM systems using a sparse Bayesian learning (SBL) framework for exact inference. In a quasi-static, block-fading scenario, we employ the SBL algorithm for channel estimation and propose a joint SBL (J-SBL) and a low-complexity recursive J-SBL algorithm for joint channel estimation and data detection. In a time-varying scenario, we use a first-order autoregressive model for the wireless channel and propose a novel, recursive, low-complexity Kalman filtering-based SBL (KSBL) algorithm for channel estimation. We generalize the KSBL algorithm to obtain the recursive joint KSBL algorithm that performs joint channel estimation and data detection. Our algorithms can efficiently recover a group of approximately sparse vectors even when the measurement matrix is partially unknown due to the presence of unknown data symbols. Moreover, the algorithms can fully exploit the correlation structure in the multiple measurements. Monte Carlo simulations illustrate the efficacy of the proposed techniques in terms of the mean-square error and bit error rate performance.
On Precoding for Constant K-User MIMO Gaussian Interference Channel With Finite Constellation Inputs
Resumo:
This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.
Resumo:
The algebraic formulation for linear network coding in acyclic networks with the links having integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes, at any given time instant, is a F(p)m-linear combination of the input symbols across different generations, where F(p)m denotes the field over which the network operates (p is prime and m is a positive integer). We use finite-field discrete Fourier transform to convert the output symbols at the sink nodes, at any given time instant, into a F(p)m-linear combination of the input symbols generated during the same generation without making use of memory at the intermediate nodes. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (nontransform) approach if and only if there exists a network code satisfying sink demands in the transform approach. When the zero-interference conditions are not satisfied, we propose three precoding-based network alignment (PBNA) schemes for three-source three-destination multiple unicast network with delays (3-S 3-D MUN-D) termed as PBNA using transform approach and time-invariant local encoding coefficients (LECs), PBNA using time-varying LECs, and PBNA using transform approach and block time-varying LECs. We derive sets of necessary and sufficient conditions under which throughputs close to n' + 1/2n' + 1, n'/2n' + 1, and n'/2n' + 1 are achieved for the three source-destination pairs in a 3-S 3-D MUN-D employing PBNA using transform approach and time-invariant LECs, and PBNA using transform approach and block time-varying LECs, where n' is a positive integer. For PBNA using time-varying LECs, we obtain a sufficient condition under which a throughput demand of n(1)/n, n(2)/n, and n(3)/n can be met for the three source-destination pairs in a 3-S 3-D MUN-D, where n(1), n(2), and n(3) are positive integers less than or equal to the positive integer n. This condition is also necessary when n(1) + n(3) = n(1) + n(2) = n where n(1) >= n(2) >= n(3).
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. Furthermore, it was shown through the connection between network coding and matroid theory that linear network coding is not always sufficient for general network coding scenarios. The current work attempts to establish a connection between matroid theory and network-error correcting and detecting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of linear network-error detecting codes to arrive at the definition of a matroidal error detecting network (and similarly, a matroidal error correcting network abstracting from network-error correcting codes). An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error detecting (correcting) network code if and only if it is a matroidal error detecting (correcting) network associated with a representable matroid. Therefore, constructing such network-error correcting and detecting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa. We then present algorithms that enable the construction of matroidal error detecting and correcting networks with a specified capability of network-error correction. Using these construction algorithms, a large class of hitherto unknown scalar linearly solvable networks with multisource, multicast, and multiple-unicast network-error correcting codes is made available for theoretical use and practical implementation, with parameters, such as number of information symbols, number of sinks, number of coding nodes, error correcting capability, and so on, being arbitrary but for computing power (for the execution of the algorithms). The complexity of the construction of these networks is shown to be comparable with the complexity of existing algorithms that design multicast scalar linear network-error correcting codes. Finally, we also show that linear network coding is not sufficient for the general network-error correction (detection) problem with arbitrary demands. In particular, for the same number of network errors, we show a network for which there is a nonlinear network-error detecting code satisfying the demands at the sinks, whereas there are no linear network-error detecting codes that do the same.
Resumo:
User authentication is essential for accessing computing resources, network resources, email accounts, online portals etc. To authenticate a user, system stores user credentials (user id and password pair) in system. It has been an interested field problem to discover user password from a system and similarly protecting them against any such possible attack. In this work we show that passwords are still vulnerable to hash chain based and efficient dictionary attacks. Human generated passwords use some identifiable patterns. We have analysed a sample of 19 million passwords, of different lengths, available online and studied the distribution of the symbols in the password strings. We show that the distribution of symbols in user passwords is affected by the native language of the user. From symbol distributions we can build smart and efficient dictionaries, which are smaller in size and their coverage of plausible passwords from Key-space is large. These smart dictionaries make dictionary based attacks practical.
Resumo:
Spatial modulation (SM) is attractive for multiantenna wireless communications. SM uses multiple transmit antenna elements but only one transmit radio frequency (RF) chain. In SM, in addition to the information bits conveyed through conventional modulation symbols (e.g., QAM), the index of the active transmit antenna also conveys information bits. In this paper, we establish that SM has significant signal-to-noise (SNR) advantage over conventional modulation in large-scale multiuser (multiple-input multiple-output) MIMO systems. Our new contribution in this paper addresses the key issue of large-dimension signal processing at the base station (BS) receiver (e.g., signal detection) in large-scale multiuser SM-MIMO systems, where each user is equipped with multiple transmit antennas (e.g., 2 or 4 antennas) but only one transmit RF chain, and the BS is equipped with tens to hundreds of (e.g., 128) receive antennas. Specifically, we propose two novel algorithms for detection of large-scale SM-MIMO signals at the BS; one is based on message passing and the other is based on local search. The proposed algorithms achieve very good performance and scale well. For the same spectral efficiency, multiuser SM-MIMO outperforms conventional multiuser MIMO (recently being referred to as massive MIMO) by several dBs. The SNR advantage of SM-MIMO over massive MIMO can be attributed to: (i) because of the spatial index bits, SM-MIMO can use a lower-order QAM alphabet compared to that in massive MIMO to achieve the same spectral efficiency, and (ii) for the same spectral efficiency and QAM size, massive MIMO will need more spatial streams per user which leads to increased spatial interference.
Resumo:
We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple-access channel (MAC), and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: 1) perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message and 2) strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain goodness properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multihop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.
Resumo:
Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.
Resumo:
This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.